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Abstract

Background: Douglas-fir (Pseudotsuga menziesii), one of the most economically and ecologically important tree
species in the world, also has one of the largest tree breeding programs. Although the coastal and interior varieties
of Douglas-fir (vars. menziesii and glauca) are native to North America, the coastal variety is also widely planted for
timber production in Europe, New Zealand, Australia, and Chile. Our main goal was to develop a SNP resource large
enough to facilitate genomic selection in Douglas-fir breeding programs. To accomplish this, we developed a
454-based reference transcriptome for coastal Douglas-fir, annotated and evaluated the quality of the reference,
identified putative SNPs, and then validated a sample of those SNPs using the Illumina Infinium genotyping
platform.

Results: We assembled a reference transcriptome consisting of 25,002 isogroups (unique gene models) and
102,623 singletons from 2.76 million 454 and Sanger cDNA sequences from coastal Douglas-fir. We identified
278,979 unique SNPs by mapping the 454 and Sanger sequences to the reference, and by mapping four datasets of
Illumina cDNA sequences from multiple seed sources, genotypes, and tissues. The Illumina datasets represented
coastal Douglas-fir (64.00 and 13.41 million reads), interior Douglas-fir (80.45 million reads), and a Yakima population
similar to interior Douglas-fir (8.99 million reads). We assayed 8067 SNPs on 260 trees using an Illumina Infinium
SNP genotyping array. Of these SNPs, 5847 (72.5%) were called successfully and were polymorphic.

Conclusions: Based on our validation efficiency, our SNP database may contain as many as ~200,000 true SNPs,
and as many as ~69,000 SNPs that could be genotyped at ~20,000 gene loci using an Infinium II array—more SNPs
than are needed to use genomic selection in tree breeding programs. Ultimately, these genomic resources will
enhance Douglas-fir breeding and allow us to better understand landscape-scale patterns of genetic variation and
potential responses to climate change.
Background
The availability of high-throughput sequencing methods
has led to the discovery of thousands to millions of single
nucleotide polymorphisms (SNPs) in diverse organisms,
particularly humans, model experimental organisms, and
agriculturally important plants and animals. Combined
with high-throughput genotyping platforms, SNP markers
are having substantial impacts on human medicine as well
as plant and animal breeding [1-3]. They are also being
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reproduction in any medium, provided the or
used to provide detailed insights into the population
genetics of natural populations, and are likely to help
elucidate the functional basis of simply inherited traits. In
addition, they are frequently cited as the solution for un-
derstanding the explicit genetic basis of quantitative traits
[4], although prospects for the latter remain uncertain [5].
Our main goal was to develop and test a large number

of SNP markers for Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco) that could be used to enhance and acce-
lerate Douglas-fir breeding via genomic selection. Tree
breeders typically make breeding decisions based on an
individual’s breeding value, which is the average perfor-
mance of an individual’s offspring. Currently, breeding
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values are estimated from measurements made in progeny
tests containing thousands to tens of thousands of trees.
Genomic selection, or whole-genome marker-assisted
selection [6], could revolutionize tree breeding by allowing
breeders to dramatically reduce the generation interval
and extent of progeny testing. Genomic selection has been
widely adopted in livestock breeding [7], where empirical
studies suggest that accuracies of genomic selection are
often 70% or more, compared to accuracies of 30 to 40%
for breeding values estimated from parental performance,
and accuracies of about 85% for breeding values estimated
from progeny testing, which is both time-consuming and
costly [3]. However, these encouraging results required
SNP resources consisting of thousands to tens of thou-
sands of SNPs—numbers that far exceed what is available
for Douglas-fir. In addition to genomic selection, SNP
markers are expected to replace simple sequence repeats
(SSRs) for routine, automated uses of markers for other
breeding program applications. The high variability of SSR
markers makes them ideal for many applications, but
automated marker scoring is often challenging. In seed
orchards, genetic markers (mostly SSRs) are routinely used
to confirm the identity of seed orchard trees, measure
pollen contamination, assess the effectiveness of pollen
management techniques, measure and manage inbreeding
and genetic diversity, determine parental contributions to
open-pollinated seedlots (i.e., progeny populations), and
verify seedlot integrity [8,9]. Highly informative genetic
markers may also allow breeders to combine simple, cost-
effective mating designs (e.g., polymix or open-pollinated
designs) with parental analysis to reduce breeding costs,
speed breeding progress, and increase genetic gains [10,11].
Douglas-fir is one of the most ecologically and eco-

nomically important tree species in the world. It occu-
pies diverse habitats from central British Columbia to
Mexico, and from the Pacific Ocean to the eastern
slopes of the Rocky Mountains. In the Pacific Northwest,
coastal Douglas-fir (var. menziesii) forms ancient forests
that serve as key habitats for endangered species, and
are widely grown in plantations that form the foundation
of a multi-billion dollar forest products industry. In the
Rocky Mountains, the interior or Rocky Mountain var-
iety (var. glauca (Beissn.) Franco) occupies mostly drier
and colder sites, and has a more varied impact on the
ecology and economy of the region. In Mexico, Douglas-
fir exists as widely dispersed ‘sky-island’ populations that
are typically considered extensions of var. glauca, but
may deserve their own varietal status [12,13]. Overall,
Douglas-fir is ecologically, physiologically, and genetic-
ally diverse, within and among varieties (reviewed in
[14]). Because of its economic importance, Douglas-fir
has one of the largest tree breeding programs in the
world. The Northwest Tree Improvement Cooperative
program for coastal Douglas-fir has nearly 4 million tested
trees, including more than 31,000 first-generation parents
tested on 1,016 progeny test sites, and 2,980 second-cycle
crosses tested on 129 sites [14] (K. Jayawickrama, personal
communication). Smaller breeding programs exist for
interior Douglas-fir in the United States and Canada
(reviewed in [14]). In coastal Douglas-fir, breeding focuses
on improving growth, stem form, and wood properties
while maintaining climatic adaptability.
Our primary goal was to greatly expand the SNP

resources for Douglas-fir beyond the 200–300 validated
SNPs that were currently available [15]. Therefore, we
combined two high-throughput sequencing technologies
(454 pyrosequencing and Illumina sequencing-by-synthesis)
to sequence the transcriptomes of diverse tissues and
Douglas-fir genotypes. Our objectives were to (1) develop
a reference transcriptome for coastal Douglas-fir by
combining existing Sanger sequences with new 454
sequences, (2) annotate and evaluate the quality of the
reference transcriptome, (3) map 454 and Illumina short-
read sequences to the reference and identify SNPs, and
(4) construct and test a high-density Infinium genotyping
array. In addition to the SNP markers we developed, our
reference transcriptome will facilitate studies of gene
expression and function, and will aid efforts to assemble
and annotate reference genome sequences of Douglas-fir
and other conifers (http://pinegenome.org/pinerefseq/).

Results
Pre-assembly sequence processing for the reference
transcriptome
We used long reads from three datasets as the basis for
de novo assembly of a reference transcriptome for coastal
Douglas-fir. Prior to the final assembly, we cleaned and
filtered these datasets as shown in Figure 1 (Steps 1–5).
These datasets included 454 sequences from a single
genotype (SG454 = 1.241 M reads) and sequences from
two multi-genotype pools produced using 454 pyro-
sequencing (MG2454 = 1.709 M reads) and Sanger sequen-
cing (MG1SANG = 12,157 reads). Our initial pool of
2.96 × 106 reads was reduced to 2.78 × 106 reads after
filtering using the SnoWhite pipeline (Table 1). The per-
centage of filtered sequences was substantially smaller for
the normalized than for the non-normalized 454 dataset
(2.4% for MG2454 versus 11.2% for SG454), and this effect
was most pronounced for the rRNA and retrotransposon-
like sequences (Table 1). After removing additional fungal
and bacterial sequences, and excluding reads shorter than
50 nt, 2.76 × 106 sequences were available to assemble the
reference transcriptome (Table 2).

Assembly of the reference transcriptome
In this section, we describe the preliminary and final
assemblies of the reference transcriptome (Figure 1, Steps
4–6), and analyses we used to infer the orientation of the
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Figure 1 Strategy for assembling the Douglas-fir reference transcriptome and detecting SNPs. We used one Sanger sequence dataset
(MG1SANG) and two 454 sequence datasets (MG2454 and SG454) to assemble the reference transcriptome. We then used these same datasets plus
four Illumina short read datasets (MG2IL, CBIL, YKIL, INTIL) to detect flanking variants. Orange boxes represent Sanger and 454 datasets, blue boxes
represent Illumina short-read datasets, green boxes represent the reference transcriptome, red boxes represent SNP filtering steps, and yellow
boxes represent SNP genotyping and analytical steps. The number of SNPs for which Infinium genotyping assays were successfully designed
(Assay Design Tool score ≥ 0.6) depends on the probability used for filtering the target SNPs (PS < 0.01, 0.001, and 0.0001) and the probability
used to mask nucleotides in the flanking regions (PF = 0.1, 0.01, 0.001, and 0.0001). Larger PF values resulted in more flanking variants and fewer
target SNPs with successful designs.
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Table 1 Sequence datasets used to construct the Douglas-fir reference transcriptome*

Plant materials (dataset ID)
Collection information

Method†

cDNA library
Total reads in
dataset (%)

Number of reads filtered from the input dataset
(% of library total)

Short or
low-quality

Adapter or
vector

Chloro-
plast

Mitochon-
drial

rRNA Retro-
transposon

Multi-genotype #1 (MG1SANG) Sanger 12,157
(100)

57
(0.47)

0
(0.00)

2
(0.02)

2
(0.02)

0
(0.00)

1
(0.01)

Cold season Normalized

Greenhouse Non-normalized

Multi-genotype #2 (MG2454) GS-FLX Titanium 1,709,211
(100)

6649
(0.39)

1893
(0.11)

8570
(0.50)

5519
(0.32)

7264
(0.42)

11,114
(0.65)

Cold and warm seasons Normalized

Single-genotype (SG454) GS-FLX Titanium 1,241,260
(100)

6582
(0.53)

1826
(0.15)

11,070
(0.89)

10,463
(0.84)

86,828
(7.00)

21,849
(1.76)

July 8, 2008 Non-normalized

All datasets 2,962,628
(100)

13,288
(0.45)

3719
(0.13)

19,642
(0.66)

15,984
(0.54)

94,092
(3.18)

32,964
(1.11)

* For each dataset, the numbers of reads filtered using the SnoWhite pipeline (Figure 1, Step 3) are shown by sequence type.
† GS-FLX Titanium is the Roche 454 sequencing platform.
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resulting isotigs and singletons. Different assembly param-
eters resulted in few differences in the number of resulting
isogroups (overlap length = 35 or 45; overlap identity = 82
to 98%; overlap difference score = −2 or −6). In particular,
there was almost no increase in the total number of
isogroups when the overlap identity was increased from
82% to 90%, and only a slight increase from 90% to 98%.
The final de novo assembly was constructed using a mini-
mum overlap length of 45 nt, minimum overlap identity
of 96%, and an alignment difference score of −6. However,
before conducting the final assembly, we assembled the
454 datasets (MG2454 and SG454) separately, and then
used BLASTN to compare the resulting isotigs and single-
tons to a series of databases to identify and remove
sequences from contaminating fungal and bacterial organ-
isms (Figure 2). After the final assembly, we used Vmatch
to eliminate redundant sequences from 40,010 assembled
isotigs, resulting in 38,589 non-redundant isotigs with an
average length of 1,390 nt and N50 of 1,883 nt (Table 2).
Table 2 Characteristics of the Douglas-fir transcriptome assem

Statistic Number Mea

Reads used by Newbler* 2,764,549 360

Reads assembled by Newbler† 2,544,087 364

Isotigs§ 38,589 139

Isogroups 25,002 144

Isogroups with 1 isotig (I1) 18,774 133

Isogroups with >1 isotig (IM)‡ 6228 177

Singletons 102,623 356

Total (isogroups + singletons) 127,625 569
* The input number of reads is less than the total in Table 1 (2.96 × 106) because re
sequences actually used in the assembly after applying a default minimum length o
† Includes reads that assembled as complete reads or as partial reads.
§ Isotigs ≥ 200 nt were deposited at DDBJ/EMBL/GenBank under accession GAEK01
‡ Statistics for the IM isogroups were calculated using the longest isotig in each iso
The resulting reference transcriptome consisted of 25,002
isogroups (unique gene models) and 102,623 singletons.
Of these 25,002 isogroups, 18,744 were represented by a
single isotig (transcript variant), and are inferred to corres-
pond to a single transcript. These isogroups and isotigs
are referred to as the ‘I1’ (Isogroups with 1 isotig) subset
in the following analyses. The remaining 6,228 isogroups
were represented by multiple isotigs, which suggests they
represent alternatively spliced transcripts from the same
gene. These isogroups and isotigs are subsequently re-
ferred to as the ‘IM’ (Isogroups with Multiple isotigs) sub-
set. The reference transcriptome (i.e., 37,177 isotigs ≥ 200
nt) has been deposited at DDBJ/EMBL/GenBank under
accession GAEK01000000. The characteristics of the
transcriptome isotigs and singletons are described in
Additional files 1 and 2.
Mapping of strand-oriented reads from the CBIL and

YKIL libraries allowed us to infer the orientations of 73.4%
of the isotigs and 9.5% of the singletons (Additional file 1:
bly using Newbler v2.3

Length (nt)

n Median N50 Total

392 416 996,614,802

394 416 925,577,338

0 1141 1883 53,622,767

3 1181 1864 36,069,331

4 1053 1750 25,046,862

0 1547 2141 11,022,469

384 413 36,504,221

413 517 72,573,552

ads shorter than 50 nt were excluded. Statistics were calculated using the
f 40 for reads trimmed by Newbler.

000000.
group.



Figure 2 Taxonomic distributions of Douglas-fir sequences identified as bacterial or fungal contaminants. We used preliminary
assemblies of the SG454 and MG2454 datasets and BLAST searches to identify isotigs and singletons resulting from bacterial or fungal
contamination (see Methods). Reads corresponding to these singletons and isotigs were removed prior to the final assembly. Numbers in
parentheses are the total number of sequences (isotigs and singletons) in each category.
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Tables S1 and S3). The orientations of the remaining
isotigs and singletons were ambiguous because the bino-
mial test was non-significant or no data were available
(i.e., no Illumina reads were successfully mapped). Other
assembly characteristics are reported in Table 2.

Comparison to white spruce and loblolly pine
To evaluate our assembled isotigs, we compared them to
a well characterized set of white spruce unigenes
(Figure 1, Step 8). Isotigs with clear interpretable rela-
tionships to these unigenes were assigned high confi-
dence scores, and were preferentially included on the
SNP array. We categorized the isotigs into confidence
classes (C1-C7) based on their relationships to the white
spruce unigenes described by Rigault et al. [16] (Table 3).
Lower numbers represent simpler relationships and
(hypothetically) greater confidence that the assembly is
correct. Although the percentages of unmatched isotigs
(Class C7) were roughly equal for the two subsets (I1 =
28% and IM = 24%), the other classes differed dramatic-
ally between the I1 and IM subsets (Table 3). This
reflects the more complex relationships that are possible
for isogroups with multiple isotigs (IM subset), and
shows how this leads to generally lower confidence
scores for this group.
When we conducted the same SCARF analysis using
35,550 loblolly pine contigs, the results were nearly iden-
tical to those of white spruce (data not shown). For
example, the correlation between the numbers of isotigs
in each confidence class was 0.96 between spruce and
pine (i.e., 0.96 for both the I1 and IM isotigs). In
addition, 67% of the no-hit isotigs found using spruce as
the reference (n = 9960) were also no-hits using pine as
the reference (n = 6651). Conversely, 80% of the no-hit
isotigs found using pine as the reference (n = 8293) were
also no-hits using spruce (n = 6651).

Annotation
We annotated the isotigs and singletons (Figure 1, Step
8), and then used this information to select SNPs for the
SNP array. For all three protein databases, the percent-
ages of sequences with matches were highest for the I1
subset, moderate for the IM subset, and lowest for the
singletons (S subset) (Table 4). The Annot8r annotation
tool creates subsets of selected UniProt databases that
only include protein sequences with GO, EC, or KEGG
annotations. Therefore, in contrast to the results from
Annot8r, many of the proteins in the Uniref50 database,
and some of the proteins in the TAIR10 database have
unknown functions. Thus, the results from Annot8r



Table 3 Comparison between Douglas-fir isotigs and white spruce unigenes [16]

Number of isotigs

Class* No. of WS
matches†

Do other DF match
the same WS?§

Do other matching
DF overlap?‡

Isotig
confidence#

I1 subset (1 isotig per
isogroup) (18,774)

IM subset
(>1 isotig per isogroup) (19,815)

Example visual representations@

C1 1 No - Highest 5140 261

C2 2+ No - Higher 896 88

C3 1 Yes No Higher 1767 577

C4 2+ Yes No Medium 586 159

C5 1 Yes Yes Lower 1736 6974

C6 2+ Yes Yes Lowest 3405 7040

Subtotal - - - 13,530 15,099

C7 No matches - - Unknown 5244 4716
*Douglas-fir (DF) isotigs were categorized into seven classes (C1-C7) and three levels of confidence based on their relationships to white spruce (WS) contigs using the SCARF program [68].
†Number of white spruce contigs that matched the Douglas-fir query.
§‘Yes’ indicates that at least one non-query isotig also matched the same white spruce contig.
‡‘Yes’ indicates that the query and at least one non-query isotig matched the same region of the white spruce contig (overlapped).
#Subjective level of confidence in the isotig assembly based on the information presented in columns 2–4.
@Cross-hatched bars represent white spruce contigs, black bars represent query Douglas-fir isotigs, and white bars represent non-query Douglas-fir isotigs.
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Table 4 Numbers and percentages of Douglas-fir sequences with matches to sequences in three protein databases*

Isogroups (25,002)† Singletons (102,623)§

Isogroups with 1 isotig (I1 = 18,774) Isogroups with >1 isotig (IM = 6228) Singletons (S = 102,623)

Database Number Percent Number Percent Number Percent

Uniref50 15,054 80.2 3446 55.3 25,757 25.1

TAIR10 13,749 73.2 3260 52.3 15,907 15.5

Annot8r 11,733 62.5 2862 46.0 14,836 14.5
*Matches were recorded for isogroups and singletons at a tBLASTX E-value < 10-5.
†Isogroups are Newbler v2.3 isogroups. For the isogroups with more than 1 isotig (IM subset), a hit was counted only if all isotigs matched the same protein in
the database.
§Singletons are 454 reads that did not assemble with any other reads.
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provide the percentages of Douglas-fir sequences that
can be annotated by function (62.5% for the I1 subset,
46.0% for the IM subset, and 14.5% for the singletons).
We subsequently used these annotations to target SNPs
associated with growth, phenological traits, stress resist-
ance, or adaptation to temperature or drought. In con-
trast, the distribution of matches among taxonomic
groups did not differ substantially among subsets I1, IM,
and S (Table 5). Small percentages (I1 = 0.89%, IM =
0.35%, S = 3.55%) of assembled Douglas-fir sequences
matched fungal, bacterial, and viral sequences at an
E-value < 10-5, which is greater than the much more
stringent 10-10 E-value we used to identify contaminat-
ing isotigs and singletons during the filtering that
preceded our final assembly.
The differences in the distributions of GO slim classifi-

cations among the three types of Douglas-fir sequences
(I1, IM, and S) were small (Figure 3). Compared to
Table 5 Numbers and percentages of Douglas-fir sequences w
database*

Isogroups (25,00

Isogroups with 1 isotig (I1 = 18,774) Isog

Taxonomic category Number Percent of matches Num

Conifers 4088 27.16 10

Other plants 9713 64.52 20

Other Eukaryotes 582 3.87 1

Invertebrates 487 3.24 1

Bacteria 123 0.82

Environmental 21 0.14

Vertebrates 17 0.11

Fungi 19 0.13

Viruses 4 0.03

Total matches 15,054 100.00 34

Unmatched 3720 - 27

Percent matched 80.2 - 55
*Matches are grouped by taxonomic affiliation and percentages are relative to the t
sequences are in parentheses.
†Isogroups are Newbler v2.3 isogroups. For the isogroups with more than 1 isotig (I
the database.
§Singletons are 454 reads that did not assemble with any other reads.
Douglas-fir, many more Arabidopsis sequences fell into
the “unknown cellular components” and “unknown mo-
lecular functions” classes. This indicates that Douglas-fir
sequences were less likely to match these classes of
Arabidopsis sequences than others, suggesting that they
tend to exhibit species-specific characteristics (i.e., are
more highly diverged or absent from Douglas-fir). Pre-
sumably, many of the unmatched Douglas-fir genes
would fall into these GO slim classes had we used a less
stringent E-value.

SNP detection
Two criteria are important for selecting SNPs for an
Infinium genotyping array. First, the target SNP should
have a high probability (i.e., low P-value, PS) of being a true
variant. Second, the target SNP should have no variants in
its flanking sequences where the genotyping primers must
hybridize. Therefore, the P-values for flanking variants
ith matches to sequences in the Uniref50 protein

2)† Singletons (102,623)§

roups with >1 isotig (IM = 6228) Singletons (S = 102,623)

ber Percent of matches Number Percent of matches

73 31.14 6486 25.18

47 59.40 16,061 62.36

82 5.28 658 2.55

20 3.48 1087 4.22

8 0.23 830 3.22

6 0.17 37 0.14

6 0.17 92 0.36

4 0.12 487 1.89

0 0.00 19 0.07

46 100.00 25,757 100.00

82 - 76,866 -

.3 - 25.1 -

otal number of matches (tBLASTX E-value < 10-5). Numbers of input Douglas-fir

M subset), a hit was counted only if all isotigs matched the same protein in



Figure 3 Distributions of Douglas-fir sequences and Arabidopsis genes by GO slim terms. Distributions are shown for Arabidopsis genes
(TAIR10 accessions), two types of Douglas-fir isogroups (I1 subset = isogroups with one isotig and IM subset = isogroups with more than one
isotig), and Douglas-fir singletons.
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(SNPs and indels, PF) should also be considered. A high
SNP conversion rate is expected when a very high P-value
(permissive probability threshold) is used for flanking vari-
ants, and a very low P-value (stringent probability thresh-
old) is used for target SNPs. However, this approach will
dramatically reduce the number of SNPs that can be
detected and assayed. In this section, we describe how we
filtered all potential target SNPs based on PS, PF, and other
criteria (Figure 1, Steps 9–10).
We used a permissive probability threshold (PF = 0.10)

to detect potential SNPs and indels in the flanking regions
of target SNPs (Figure 1, Step 9). These positions were
then excluded (masked) from consideration when the
genotyping primers were designed. Out of a total assembly
of 72.6 × 106 nucleotides, we masked 820,253 SNPs and
119,728 indel positions. In the subsequent filtering step to
identify target SNPs, we identified bi-allelic SNPs that
were not near high-quality indels (i.e., indels with scores ≥
25), had a mapping quality score > 40 in at least one
dataset, and target SNP probabilities (PS) of < 10-2, 10-3,
or 10-4 in at least one dataset (Figure 1, Step 10). For the
most stringent (10-4) level of probability, these criteria
resulted in 278,979 potential SNPs (Additional file 3),
183,380 of which were detected in more than one dataset
(Table 6). Many SNPs were detected in both the coastal
and interior datasets—151,014 shared SNPs in 17,361
isogroups. On average, these shared SNPs represented
74% of all coastal SNPs and 67% of all interior SNPs. Not
surprisingly, more SNPs were detected in the larger
datasets (Table 6).

SNP array
In this section, we describe other criteria, including
Infinium design scores, which were used to select the
final set of SNPs to test on the genotyping array. Design
scores are values generated by the Infinium Assay
Design Tool that are associated with the performance of
SNP assays. Design scores could be generated for only
34% (95,478/278,979) of the target SNPs submitted to
Illumina (Figure 1, Step 11), primarily because of the
permissive probability threshold (PF = 0.10) used for
calling variants in the flanking sequences. That is, assays
were not possible for 66% of the target SNPs because of
flanking SNPs and indels in the assay design region



Table 6 Numbers of potential SNPs detected in Douglas-fir using an individual dataset probability value of 10-4

No. of reads
(× 106)

No. of unique or shared SNPs*

Plant materials
(dataset ID)

Seed
source

Sequencing
platform

Unique Coastal Yakima Interior Total†

————————————— All isotigs (1 isotig/isogroup (I1)) -———————————

Multi-genotype #1 (MG1SANG)
Multi-genotype #2 (MG2454)
Single-genotype (SG454)

Coastal
Coastal
Coastal

Sanger
Roche 454
Roche 454

2.77 3982 (2606) 101,089 (85,635) 29,922 (25,523) 81,633 (69,109) 107,884 (90,487)

Multi-genotype #2 (MG2IL) Coastal Illumina 64.00 18,694 (15,617) 192,693 (162,560) 41,952 (35,700) 146,242 (123,503) 192,693 (162,560)

Coos Bay (CBIL) Coastal Illumina 13.41 1044 (895) 66,304 (56,547) 29,051 (24,703) 53,275 (45,437) 66,304 (56,547)

Yakima (YKIL) Yakima Illumina 8.99 638 (545) 43,066 (36,621) - 40,840 (34,750) 47,573 (40,505)

Interior (INTIL) Interior Illumina 80.45 71,241 (61,334) 151,014 (127,403) 40,840 (34,750) - 226,124 (192,076)

Total 169.62
*The number of unique SNPs and the number of SNPs shared in other datasets of the coastal, Yakima, and interior seed sources are presented for all isogroups (I1 + IM) and for the 1 isotig per isogroup subset (I1) (in
parentheses). The total number of unique SNPs detected in all datasets was 278,979.
†SNP totals are not the sums of the values in the same row because SNPs are double-counted. For example, we detected 66,304 SNPs in the CBIL dataset, 29,051 of which were detected in the YKIL dataset and 53,275
of which were detected in the INTIL dataset.
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Table 7 Douglas-fir SNPs detected using an Illumina Infinium SNP array (n = 260 trees)

No. of SNPs in category/No. of SNPs attempted or assayed (%)*

SNP category Number of SNPs Attempted (n=8769) Assayed (n=8067)

SNPs attempted 8769 100.0 108.7

SNPs assayed 8067 92.0 100.0

Called SNPs (call frequency > 0.85)† 7256 82.7 89.9

Called SNPs that are polymorphic (MAF > 0) 5847 66.7 72.5

Percent of called SNPs that are polymorphic (5847/7256) = 80.6
*The number of SNPs in each category is expressed as a percentage of the total number of SNPs attempted (n = 8769) and number of SNPs successfully assayed
on the array (n = 8067).
†Successful calls are those with a GenCall score ≥ 0.15 [19].

Table 8 Characteristics of 5847 successful SNPs based on
data from an Illumina Infinium SNP array*

SNP characteristic Mean Median Range

GenTrain score 0.81 0.84 0.35-0.98

GC50 score (median GenCall score) 0.78 0.87 0.15-0.99

Call frequency† 0.99 1.00 0.85-1.00

Minor allele frequency (MAF) 0.24 0.24 0.002-0.5

Heterozygosity (observed) 0.33 0.36 0.00-1.00

Heterozygosity (expected) 0.32 0.36 0.004-0.5

Number of SNPs with a significant HWE deviation = 263 (4.5%)§

*Successful SNPs are those with a call frequency > 0.85 and MAF > 0 based on
an analysis of 260 trees.
† Successful calls are those with a GenCall score ≥ 0.15 [19].
§ Tested using an exact test of HWE and a probability level of 0.9 × 10-5 (i.e.,
Bonferroni-corrected P-value of 0.05 based on 5847 SNPs).
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(failure code 106). We then selected 8769 SNPs to test
using an Infinium genotyping array (Figure 1, Step 12)
[18]. Selection criteria included differential expression,
annotations, target SNP probabilities, minor allele
frequencies (MAF), Illumina design scores, and SNP array
capacity. Of the 8769 attempted SNPs, only 8067 (92%)
were assayed because of the normal loss of bead types that
occurs during array manufacture (Figure 1, Step 13). Of
these, 7256 SNPs had call frequencies ≥ 85%, and
5847 of these were polymorphic in a sample of 260
trees (i.e., successful SNPs in Figure 1 and Table 7).
Of the 5847 successful SNPs, 263 (4.5%) had signifi-
cant deviations from Hardy-Weinberg equilibrium
(HWE). The characteristics of the successfully called
and polymorphic SNPs are described in Additional
file 4 and summarized in Table 8.
Using logistic regression, we identified eight bioinfor-

matic characteristics significantly related to the ability to
distinguish the 5847 successful SNPs from the remaining
2220 SNPs that were assayed (P < 0.05). The order in
which the variables entered the model reflects their rela-
tive importance: (1) number of datasets in which the SNP
was detected, (2) mean number of reads across datasets,
(3) number of contigs per isotig, (4) minimum SNP prob-
ability across datasets, (5) isotig length, (6) isotig type
(i.e., single isotig/isogroup, longest of multiple isotigs/
isogroup, or one of multiple isotigs/isogroup), (7) mean
SNP probability across datasets, and (8) confidence group
(C1-C7). The four variables that did not enter the model
were the mean minor allele frequency across datasets,
number of isotigs per isogroup, SNP IUPAC code, and
Illumina design score.

Discussion
We developed a reference transcriptome and large SNP
database for Douglas-fir that will serve as a resource for a
variety of research and breeding applications. We detected
SNPs by aligning 454 and Illumina short-read sequences
to a reference transcriptome, and then identifying SNP
and indel polymorphisms. During this process, we incor-
porated steps specifically designed to sequence transcripts
from diverse genotypes, tissues, and environmental condi-
tions; identify highly-likely SNP positions; and maximize
the number of SNPs that can be reliably assayed using an
Illumina Infinium II SNP array. A thorough evaluation of
the reference transcriptome provides information on the
sequences from which the SNPs were derived, including
annotations. A set of 278,979 SNPs were deposited in the
dbSNP database with submitted SNP ID numbers (ss#)
ranging from 523,746,501 to 524,245,331.

Assembly of the reference transcriptome
We used Newbler v2.3 (Roche GS De Novo Assembler)
to assemble a reference transcriptome from 454 and
Sanger sequences. As for most other non-model organ-
isms [20], we chose pyrosequencing because longer
reads are better for de novo assembly, and during the
sequencing phase of the project, 454 read lengths offered
a clear advantage [21]. Sequences were removed from
the input dataset by first filtering short and low-quality
reads, and reads closely related to adaptor, vector,
chloroplast, mitochondrial, rRNA, or retrotransposon
sequences (Table 1). For all classes of sequences, the
normalized 454 dataset (MG2454) had smaller numbers
of filtered sequences than did the non-normalized
dataset (SG454). Across all datasets (Sanger and 454),
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rRNA-like sequences represented the largest percentages
of filtered reads (3.18%), with retrotransposon-like
sequences being second (1.11%). We used procedures
similar to those described by Parchman et al. [22] to
identify the retrotransposon sequences at the read-level.
In lodgepole pine, Parchman et al. [22] found that 3.9%
of their normalized 454 reads had characteristics of
retrotransposons, but our values were 1.76% and 0.65%
for the non-normalized and normalized datasets,
respectively (Table 1). Even lower numbers of
transposon-like sequences (0.0001 to 0.07% of reads)
were reported for other conifer EST datasets [22,23].
Although these sequences could represent transcription-
ally active retrotransposons, genomic contaminants are
also likely to occur in the cDNA library, particularly
when random primers are used for cDNA synthesis [16].
Newbler produces three kinds of output: unique gene

models (isogroups), presumed transcript variants (isotigs),
and singletons. Prior to the final assembly, we conducted
preliminary assemblies using combinations of Newbler
parameters, and evaluated the results based on the num-
ber of isogroups represented by a single isotig (I1 subset),
number of isogroups represented by multiple isotigs (IM
subset), and total number of isogroups. We found subtle
changes in the resulting assemblies, and ultimately de-
cided to use a minimum overlap length of 45 nt, align-
ment difference score of −6, and a minimum overlap
identity of 96%. For SNP detection, we concluded that
these parameters would result in an assembly that
balances the detection of false positive SNPs among gene
family members that are treated as a single locus versus
false negative SNPs that are missed because alleles are
treated as separate loci.
We used isotigs and singletons derived from preliminary

assemblies to identify and filter reads believed to result
from contamination by fungi and bacteria, and to compare
levels of contamination between the two 454 datasets. The
single-genotype (SG454) dataset was derived from tissues
harvested from the aerial portion of the plant, whereas the
multi-genotype (MG2454) dataset also included washed
roots. These analyses suggest that bacterial and fungal
contamination was not a serious problem in either dataset
(Figure 2), but the true number of contaminating reads is
unknown because 26% of the isogroups and 75% of the
singletons remained unannotated (Table 5).
In the multi-genotype dataset (MG2454), the most highly

represented bacterial and fungal sequences seemed to be
associated with the roots included in this sample. For ex-
ample, species of Pseudomonas are common in soils, where
they are associated with plant disease and plant growth
promotion [24]. Furthermore, there is a close association
between Pseudomonas fluorescens and the symbiotic
Laccaria ectomycorrhizae that infect Douglas-fir roots
[25]. Other sequences that were common in the multi-
genotype dataset included those related to Botrytis cinera
(teleomorph Botryotinia fuckeliana), a soil fungus that
causes grey mold disease in Douglas-fir seedlings [26],
Fusarium circinatum (teleomorph Gibberella circinata),
which can cause pitch canker disease on Douglas-fir [27],
and Sclerotinia, which is interesting because this plant
pathogen has never been reported as a pathogen of
Douglas-fir (G. Newcombe, personal communication).
None of these sequences were common in the single-
genotype dataset (SG454), which did not include roots.
Instead, the most highly represented sequences in the
single-genotype dataset (Phanerochaete and Antrodia)
belong to genera that include wood-rot fungi which may
have been associated with the cambial tissues that were
specifically included in this sample. Nonetheless, this
sample did contain some reads that are related to
Inonotus, which is primarily considered a root pathogen
(G. Newcombe, personal communication).
Reference transcriptome
Our first major objective was to assemble a reference tran-
scriptome which could then be used to map reads and
identify SNPs in both varieties of Douglas-fir. Our
reference transcriptome consists of 25,002 isogroups
(unigenes), 38,589 isotigs (transcript variants), 102,623
singletons, and more than 2.5 million 454 reads (Table 2).
Of our 25,002 isogroups, 18,744 are represented by a

single isotig (transcript variant) and are inferred to
correspond to a single transcript. The remaining 6228
isogroups are represented by multiple isotigs, which
suggests they represent alternatively spliced transcripts
from the same gene. The mean length of isotigs was
1390 nt and the N50 was 1883. This N50 indicates that
50% of the assembled nucleotides occur in isotigs that
are shorter than 1883 nt. These isotigs are about as long
as those derived from other recent assemblies of tree
transcriptomes. For example, Lorenz et al. [28], assem-
bled 454 reads from 12 conifers using three assemblers.
Based on assemblies of 0.4 to 4.1 million reads (depen-
ding on species), the average number of contigs (or
isotigs) was 54,721, 56,955, and 20,598 using the MiraEST,
NGen, and Newbler assemblers, with mean contig lengths
of 787, 797, and 1198 nt. Newbler consistently yielded
many fewer and longer contigs than did MiraEst and
NGen. Using Newbler, the largest dataset of 4.1 million
reads (loblolly pine), yielded 48,751 isotigs with a mean
length of 1666 nt. In lodgepole pine, NGen was used to
assemble a transcriptome from 0.6 million 454 reads,
yielding 63,687 contigs with a mean length of 500 nt
[22]. Not surprisingly, earlier de novo assemblies of
transcriptomes of other non-model plants generally
used fewer and shorter 454 reads, yielding fewer and
shorter contigs [23,29-34].



Howe et al. BMC Genomics 2013, 14:137 Page 12 of 22
http://www.biomedcentral.com/1471-2164/14/137
Comparison to white spruce
The number of genes in Douglas-fir is unknown, but
white spruce, another conifer in the Pinaceae, is esti-
mated to have as many as 32,720 transcribed genes cov-
ering as much as 47.3 Mb [16]. This estimate, which is
based on Sanger sequencing (272,172 ESTs from cDNA
clones), next-generation transcriptome sequencing (7.4
Mb GS-FLX and 59.5 Mb of Illumina GA-II), and gen-
omic sequencing (1.7 Gb GS-FLX), provides a good basis
on which to judge the extent of our reference trans-
criptome. Considering only the longest isotig in each
isogroup, our assembly covers 36.1 Mb in isogroups.
Therefore, assuming that the white spruce estimates are
accurate, and the transcriptomes of Douglas-fir and
white spruce are about the same size, our isogroups
could represent 76% of the genes and total transcrip-
tome length of Douglas-fir. The total length of singletons
was another 36.5 Mb, suggesting that only a modest pro-
portion of these sequences represent unique Douglas-fir
transcripts (i.e., missing sequences from already identified
genes or unsampled genes). Given the estimated size of
the white spruce transcriptome, many of these sequences
are probably highly redundant with the assembled isotigs
or each other, or represent contaminating sequences from
genomic DNA or other organisms.
We compared our isotigs to a white spruce gene catalog

of 27,720 unigenes assembled from the 272,172 Sanger
sequences described above [16]. Each Douglas-fir isotig
was classified into one of seven classes designed to reflect
the relative likelihood that reads were assembled correctly
into a single locus (Table 3). For example, isotigs having
one-to-one matches with white spruce unigenes (E-value
< 10-5) were classified into the ‘Highest’ confidence class
(C1), and isotigs that matched multiple white spruce
isotigs and other Douglas-fir isotigs were classified
into the ‘Lowest’ class (C6). Isotigs that matched no
white spruce unigene were classified into the ‘Unknown’
confidence class (C7).
For the I1 isotigs (1 isotig/isogroup subset), the two

largest classes were the ‘Unknown’ and the ‘Highest’
confidence classes, each of which contained ~28% of the
18,774 I1 isotigs. For the IM isotigs (multiple isotigs/
isogroup subset), the largest classes were the ‘Lowest’
and the ‘Medium’ confidence classes, each of which
contained ~35% of the 19,815 IM isotigs. Overall, these
rankings reflect our assumption that overlapping isotigs
might be more common among sequences that are in-
correctly assembled. These confidence classes were used
to prioritize SNPs for the genotyping array, and could
also be used to prioritize isotigs for other uses. We sub-
sequently conducted an identical analysis using 35,550
loblolly pine contigs as the reference, and found nearly
the same distribution of isotigs among the confidence
classes. Across both analyses, we found a total of 6651
no-hit isotigs—that is, isotigs that did not match any
spruce or pine contig. This compares to a total of 9960
no-hit isotigs for the spruce analysis, and 8293 no-hit
isotigs for pine. These 6651 isotigs deserve attention
because they probably represent unique Douglas-fir
genes or mis-assembled sequences.

Annotations
Our second major objective was to annotate the refer-
ence transcriptome. We did this by comparing the
isotigs and singletons to the Uniref50 and TAIR10 pro-
tein databases at an E-value of 10-5 (Table 4). For the I1
isotigs, TAIR10 and Uniref50 matches were found for
73.2% and 80.2% of the isotigs, respectively. The per-
centages of matches for the IM isotigs were considerably
lower (52.3% and 55.3%), mostly because we only
counted matches when the best hit was identical for all
isotigs in an isogroup. Together, these analyses yielded
matches for 17,009 (TAIR10) to 18,500 (Uniref50)
isogroups. The matches for the singletons were much
lower (15.5% and 25.1%). This is expected because these
sequences are much shorter and may contain a higher
proportion of sequences derived from untranslated tran-
script regions (e.g., 5’ UTR, 3’ UTR, or unspliced
introns) or contaminating genomic DNA. Based on the
Uniref50 analyses, most of the isogroup matches had
best-hits to plant proteins (Table 5). The modest number
of isogroups with hits to conifers (5161) compared to
other plants (11,760) probably reflects the much smaller
number of available conifer sequences. Among the
matched sequences, only 1.33% of the isogroups and
5.18% of the singletons had best hits corresponding to
fungal, bacterial, or viral proteins. These could represent
contaminating sequences that were not filtered prior to
transcriptome assembly.
Because the functions of some of the sequences in the

UniRef50 and TAIR10 databases are unknown, we also
used the Annot8r annotation tool to identify Douglas-fir
sequences that could be assigned a putative function.
Specifically, we used Annot8r to query only those
sequences in the EMBL UniProt database that are tagged
with GO (Gene Ontology) annotations [35]. These
analyses found that 14,595 isogroups could be assigned a
putative function (GO term; Table 4). If we assume that
Douglas-fir has about the same number of genes as
white spruce (discussed above), we have putative func-
tional annotations for almost half of the Douglas-fir
genes (14,595/32,720 = 44.6%). The GO-annotations
were distributed across a wide range of GO slim categor-
ies, with no substantial differences among the different
categories of isotigs or singletons (Figure 3). Compared
to Douglas-fir, many more Arabidopsis sequences fell
into the “Unknown cellular components” and “Unknown
molecular functions” classes, suggesting that these GO



Figure 4 Distributions of minor allele frequencies for successful
Douglas-fir SNPs. Open bars represent all 5847 successful SNPs.
Solid bars represent 5584 successful SNPs that were in Hardy-
Weinberg Equilibrium (HWE). Successful SNPs had call frequencies >
0.85 and were polymorphic. Successful calls are those with GenCall
scores ≥ 0.15 [19].
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slim classes contain Arabidopsis genes that are more
likely to be absent from Douglas-fir or highly diverged
(i.e., resulting in no GO slim assignment for Douglas-fir).
Overall, our annotation results suggest that our reference
transcriptome (and corresponding SNPs) represent a
broad array of genes covering a substantial proportion of
the Douglas-fir transcriptome.

SNP success
Our final two objectives were to identify potential SNPs,
and then test a subset of these using an Infinium geno-
typing array. Across both varieties of Douglas-fir, we
identified 278,979 potential SNPs distributed across
20,663 isogroups. We submitted 8769 of these SNPs to
Illumina for construction of an Infinium genotyping
array. Because bead types are normally lost during the
manufacturing process, it was only possible to assay
8067 SNPs (92.0%) on the completed array (Table 7).
Based on results from 260 Douglas-fir trees, we identi-
fied 5847 reliably scored polymorphic markers, resulting
in a conversion rate of 66.7% based on the SNPs submit-
ted to Illumina, and 72.5% based on the number of
successful SNP assays (i.e., successful bead types). Using
slightly more liberal criteria (i.e., a call frequency of 55%
rather than 85%), Eckert et al. [36] reported an overall
Infinium conversion rate of ~55% in loblolly pine using a
combination of Polyphred, PolyBayes, and a machine learn-
ing approach to detect SNPs from Sanger resequencing
data. However, using their best SNP detection approach
(machine learning), the conversion rate was 66.5%, which is
the same as for our submitted SNPs, but lower than the
conversion rate for the SNPs we actually assayed (Table 7).
These conversion rates are comparable to those reported
for other tree species using the Illumina GoldenGate geno-
typing platform, which ranged from 60.0% to 77.1% in
white spruce, black spruce, loblolly pine, and apple [37-39].
In Douglas-fir, the conversion rate for a 384-SNP Golden-
Gate array was 59% [15]. However, higher conversion rates
were reported in sunflower using the Infinium platform
[74.9%; 40], and in barley, soybean, wheat, and maize, using
the GoldenGate platform [~80-95%; 41-45]. Compared to
trees and other outcrossing species, inbred crops may have
higher conversion rates because of lower genetic diversity
[38,46], resulting in fewer assay failures caused by variation
in the primer target sequences.
Our 5847 successful SNPs had a median GC50 score of

0.87 and a median call frequency of 1.00 (Table 8).
Because we filtered SNPs based on SNP probabilities and
other metrics that are positively associated with MAF, our
successful SNPs had high MAFs (median = 0.24) and
heterozygosities (median = 0.36). Therefore, their poly-
morphic information content is probably much higher
than that of randomly selected SNPs. Selection of SNPs
with high MAFs also resulted in a very flat frequency
distribution (MAF range = 0.002-0.500; Figure 4) and a
moderately flat distribution for observed heterozygosity
(Figure 5).
We also identified 263 SNPs (4.5%) that deviated signifi-

cantly from HWE based on a Bonferroni-corrected
P-value of 0.05. In general, HWE deviations may result
from genotyping errors, non-random mating, selection,
mutation, gene flow/admixture, or relatedness among
samples. However, for the SNPs with observed heterozy-
gosities much greater than 0.5 (Figure 5), we may also be
detecting polymorphisms among nearly identical paralogs
[47]. Although deviations from HWE are often used to
filter SNPs used in association studies, no consensus has
emerged on the appropriate P-value to use [48]. However,
probabilities of 10-5 to 10-6 are typically used to filter SNPs
in genome-wide association studies [49]. We used the
Bonferroni correction because this approach was previ-
ously used to filter SNPs in association studies of
Douglas-fir and loblolly pine [15,36], and because the
unadjusted threshold of 0.9 × 10-5 is consistent with other
common practices [49]. If these 263 SNPs are not used in
association genetic studies or other analyses, the number
of non-filtered SNPs would be reduced to 5584. In loblolly
pine, 1.46% (45/3082) SNPs deviated significantly from
HWE using the Infinium platform [36].
We subsequently used logistic regression to test whether

successful SNPs could be predicted from bioinformatic
characteristics. Although eight variables entered the pre-
diction model, the model had little predictive power. This
is not surprising because most of the assayed SNPs were
highly selected based on these same variables, so the inde-
pendent variables had little variation. Compared to ran-
dom selection from our pool of 8067 SNPs, the prediction
model only increased the probability of selecting success-
ful SNPs from 72.5% to 73.8%. These results suggest that



Figure 5 Distributions of expected and observed
heterozygosities for successful Douglas-fir SNPs. Open bars
represent all 5847 successful SNPs. Solid bars represent 5584 SNPs
that were in Hardy-Weinberg Equilibrium (HWE). Successful SNPs
had call frequencies > 0.85 and were polymorphic. Successful calls
are those with GenCall scores ≥ 0.15 [19].
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we could have relaxed our SNP selection criteria with little
effect on SNP success―i.e., many more successful SNPs
would have been identified had we developed and tested a
much larger genotyping array.
We also used multiple linear regression to determine

whether any of the five SNP characteristics listed in Table 8
(i.e., excluding expected heterozygosity) could be pre-
dicted from the across-dataset variables used for SNP
filtering. These predictor variables included 12 continuous
and categorical variables reflecting SNP frequencies, SNP
probabilities, numbers of covering reads, SNP repeatabi-
lities across datasets, Illumina assay design scores, isotig
characteristics, types of SNP (i.e., IUPAC codes), and SNP
confidence classes. Although all models were highly sig-
nificant, the R2 values were all below 4%, except for MAF
and observed heterozygosity. For MAF, ~20% of the
variation was explained by three variables—mean SNP
frequency, mean SNP probability, and isotig length. For
observed heterozygosity, ~16% of the variation was
explained by these three variables plus the mean number
of covering reads.

A SNP resource for genomic selection
One of our key long-term goals is to test whether genomic
selection can be used to enhance Douglas-fir breeding.
Genomic selection, or whole genome selection, is a type
of marker-assisted selection that uses dense marker cover-
age to track alleles for most or all quantitative trait loci
(QTL) in the genome [6]. If very large numbers of markers
are used, most or all QTL will be in linkage disequilibrium
with at least one marker, particularly in small populations.
Genomic selection involves two steps [50]. First, a gen-
omic prediction model is developed using phenotypes and
marker genotypes measured on a test or ‘training’ popula-
tion. Second, individuals are selected from a related popu-
lation of selection candidates based on breeding values
predicted from the marker genotypes alone.
The number of markers needed for accurate genomic

selection varies widely, depending on the genome length
(cM), effective size of the breeding population (Ne),
number of QTLs, heritability, number of generations
without model retraining, and other factors [50-52]. For
example, a 50K SNP chip has been used by dairy cattle
breeders since 2008, and a 777K SNP chip is now avail-
able that may be useful for making selections across-
breeds [53]. In contrast, it may be possible to use many
fewer markers in forest trees because small breeding
populations can be used to increase linkage disequilib-
rium (LD) [51]. In a simulation study of genomic selec-
tion in forest trees, ~2 markers per cM were sufficient
to achieve the same accuracy as BLUP-based phenotypic
selection when Ne was ≤ 30, but as many as 20 markers
per cM might be needed for an Ne of 100 [51]. Iwata
et al. [54] came to a similar conclusion in a simulation
study of a generic conifer breeding program. They con-
cluded that efficient genomic selection would be
achieved in a small breeding population (Ne = 25) using
one marker per cM, and that accuracies could be
increased by using greater marker densities. Assuming a
genome length of ~2000 cM for Douglas-fir [55], these
values (i.e., 1–20 markers per cM) are equivalent to
about 2,000 to 40,000 SNPs. Empirical results support
the results of these simulation studies. In two small
populations of Eucalyptus (Ne = 11 and 51), the accuracy
of genomic selection equaled that of BLUP-based pheno-
typic selection using > 3000 DArT markers [56]. Similar
results were also observed in a loblolly pine population
(Ne ~40) using 4825 SNP markers [57].
What is the size of our SNP resource? If we multiply

the number of potential SNPs by our SNP conversion
rate (72.5%; Table 7), we obtain an estimate of 202,260
true SNPs. However, if we had tested all 278,979 SNPs
on the genotyping array (i.e., by relaxing our selection
criteria), the SNP conversion rate may be lower. In
contrast, the number of potential SNPs would have been
much larger had we used a SNP probability threshold of
10-3 (337,938 SNPs) or even 10-2 (440,550 SNPs), but
the SNP conversion rate may have been lower as well.
Balancing these factors, a reasonable estimate for the
number of true SNPs is ~200,000. Second, what is the
number of SNPs that can be genotyped using an
Infinium II assay? This can be judged by the number of
acceptable design scores. For example, using a SNP
probability of 10-4 (278,979 potential SNPs) and a
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probability of flanking variants (PF) of 10
-1, we obtained

95,478 SNPs with design scores ≥ 0.6. Again, assuming a
72.5% conversion rate, the number of successfully geno-
typed SNPs is estimated to be 69,221. We also tested the
effects of using the same SNP probability (PS < 10-4), but
with lower flanking probabilities (PF < 10-2, 10-3, and 10-4;
Figure 1). Using a PF value of 10

-4, for example, the num-
ber of SNPs with an acceptable design score was 150,025
(Figure 1), and the number of successfully genotyped
SNPs is estimated to be 108,768. Although SNP conver-
sion rates may differ among these scenarios, our SNP
resource seems more than sufficient to pursue genomic
selection in Douglas-fir.
Although we identified 278,979 potential SNPs, they

are not distributed uniformly across the genome, which
would be optimal for genomic selection. Therefore, it
would be better to use the number of isogroups with
SNPs (n = 20,663) to judge the effectiveness of our SNP
resource for genomic selection. However, the large
number of SNPs we detected means that it should be
possible to genotype nearly all of these loci. Further-
more, if much of the genetic variance of interest is
explained by variants in or near transcribed genes, then
these markers may be more efficient than randomly
distributed markers. Approaches for increasing the
number of loci with SNPs could involve mapping more
reads to our reference transcriptome (n = 25,002
isogroups), increasing the coverage of our reference
transcriptome (yielding perhaps 30,000 to 40,000 loci),
and relying on genomic sequencing to develop add-
itional markers in non-transcribed regions.
Conclusions
We conclude that our current dataset of 278,979 poten-
tial SNPs will translate into as many as ~200,000 true
SNPs, and as many as ~69,000 SNPs that could be geno-
typed at ~20,000 gene loci using an Infinium II array.
Furthermore, we already have enough validated SNP
markers (5847 markers in 5439 isogroups) to conduct
realistic tests of genomic selection on small breeding
populations of Douglas-fir. Assuming a density of 2.5
markers per cM (5000 SNPs/2000 cM), we should be
able to practice effective genomic selection in popu-
lations up to ~30 Ne [51]. However, because current
breeding populations now average about 220 Ne

(K. Jayawickrama, personal communication), we will
either need more markers to practice genomic selection,
or genomic selection will need to focus on smaller pop-
ulations (e.g., sublines). Ultimately, our reference trans-
criptome and SNP resource will enhance Douglas-fir
breeding and allow us to better understand landscape-
scale patterns of genetic variation and potential
responses to climate change.
Methods
Plant materials and RNA preparation
Reference transcriptome
We used three sets of coastal Douglas-fir sequences to
construct the reference transcriptome (Table 1). In this
section, we describe the plant materials and general
sequencing strategies used for each dataset. Detailed
laboratory methods are described subsequently.
The goal of the first multi-genotype dataset (MG1SANG)

was to include existing Sanger sequences from a diverse
set of genotypes known to be expressing functionally
important genes. The MG1SANG dataset was prepared by
combining Sanger sequences derived from three ‘cold
hardiness’ cDNA libraries (CA, MH, and CD) and one
‘actively growing’ (GR) library [58]. Seedlings used for the
cold acclimating (CA) library were collected in September,
October, and November; seedlings used for the maximum
hardiness (MH) library were collected in December and
January; and seedlings used for the cold deacclimating
(CD) library were collected in February, March (2 dates),
and April in Corvallis, OR. On each date, 10 seedlings
were collected from a single orchard seedlot, and total
RNA was extracted separately from needles, stems, and
buds. The parents of these seedlings originated from a
low-elevation population near Toledo, OR. Total RNA
was isolated at Oregon State University (OSU) according
to Chang et al. [59], except that the RNA was subse-
quently purified on RNeasy columns (QIAGEN, Valencia,
CA, USA). Equal amounts of total RNA were pooled from
each tissue prior to sequencing. Sanger sequences from
the cold hardiness libraries (CA = 3,949; MH = 3,701; and
CD = 3,684 sequences) were combined with 6,760
sequences from the GR library prepared from actively
growing seedlings harvested from the greenhouse during
their first growing season [55].
The goal of the second multi-genotype dataset was

to increase the number genotypes, tissues, and physio-
logical conditions, while also increasing sequence depth
and coverage by using 454 pyrosequencing. The resulting
MG2454 dataset consisted of Roche 454 sequences derived
from three tissue collection regimes. First, on each of five
dates between September and April, we harvested 6 or 12
first-year seedlings and separated them into needles,
stems, and buds. These seedlings were grown outdoors in
Corvallis, OR, but their seed orchard parents originated
from a low-elevation population near Coos Bay (CB), OR
[58]. Second, we harvested three seedling tissues on five
dates between July and January from a total of 79 seedlots
provided by the Cottage Grove Nursery of Plum Creek
Timber Company. On all five dates, we harvested buds
(i.e., elongating apices or resting buds), shoots (stems plus
needles), and roots. On two of the dates when the seed-
lings were large enough, we also harvested lower stems
without needles. These seedlings were grown outdoors in
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Corvallis, and some were subjected to water stress to
induce the expression of genes associated with adaptation
to cold and drought. Third, we collected elongating
shoots from ramets of two clonal genotypes growing
at the Lebanon Forest Regeneration Center managed
by Roseburg Forest Products. Because these shoots
were collected during June from trees that had been
stimulated to produce reproductive buds, they are
expected to contain differentiating male and female
flowers (strobili). Total RNA was isolated at OSU as
described above, or at the University of Georgia
(UGA) as described by Lorenz et al. [60]. Individual
RNA samples were pooled in an attempt to have
mRNAs from buds, stems, needles, and roots equally
represented in the resulting cDNA libraries.
The goal of the single-genotype dataset was to expand

our representation of genes from mature trees and
increase sequence depth and coverage by using 454
pyrosequencing. The resulting SG454 dataset consisted of
Roche 454 sequences derived from five tissues collected
on 8 July from two mature ramets of a single clonal
genotype growing at the Lebanon Forest Regeneration
Center. We collected terminal shoots, stems, and resting
buds (all from current year branches), plus cambial
tissue and developing seeds from immature cones. Total
RNA was isolated at UGA as described by Lorenz et al.
[60], and 36 to 130 μg of total RNA was pooled from
each tissue prior to cDNA synthesis.

Illumina short-read sequences
The goal of the Illumina sequencing was to enhance
SNP detection by increasing the number and genetic
diversity of the sequences to be mapped to the reference
transcriptome. We used coastal and interior Douglas-fir
to produce four sets of Illumina short-read sequences.
One set of coastal Douglas-fir sequences (MG2IL) was
derived from the same pooled RNA sample that was
used to construct the MG2454 dataset described above.
The Coos Bay (CBIL) dataset was derived from a subset
of the Coos Bay RNA samples described above, plus
replicate samples harvested on some of the same dates.
We used six bud samples and two needle samples for a
total of eight Illumina sequencing runs. The Yakima
(YKIL) dataset was prepared using the same collection
protocol and sequencing protocol as for the CBIL
dataset, but the seedlings were derived from parents
growing in a high-elevation inland population near
Yakima, Washington that is thought to represent the
interior variety of Douglas-fir [61]. Total RNA was
isolated at OSU as described above.
The interior Douglas-fir samples (INTIL dataset) were

collected from mature trees growing in a provenance
test near Vernon, B.C., Canada [62] and the Cherrylane
Seed Orchard in northern Idaho. Young shoots were
collected from the provenance test in early May from
two trees from each of 26 seedlots collected from
Arizona and New Mexico in the south, to British
Columbia and Washington state in the north. Approxi-
mately equal amounts of total RNA were pooled from
recently flushed buds, stems, young needles, and mature
needles. The seed orchard samples were collected in
early June from 18 trees originating from northern
Idaho. Approximately equal amounts of total RNA were
pooled from stems and needles harvested from recently
flushed shoots. The two pooled RNA samples were then
combined for Illumina sequencing.

DNA sequencing
Reference transcriptome
The MG1SANG dataset was produced via Sanger sequen-
cing. For the CA, MH, and CD libraries, pooled samples
of total RNA were used by Evrogen JCS (Moscow,
Russia) for double-stranded cDNA synthesis using the
SMART approach [63], and the cDNAs were normalized
using DSN normalization [64]. The resulting cDNAs
were directionally inserted into the pAL17.1 vector and
transformed into E. coli. SymBio Corporation (Menlo
Park, CA) amplified the cDNA clones using rolling circle
amplification, and then sequenced about 4,000 cDNA
clones per library using a MegaBASE 4000 sequencer (GE
Healthcare, Little Chalfont, UK). The non-normalized GR
library was prepared and sequenced (Sanger) as described
by Krutovsky et al. [55]. Sanger sequences were archived
under GenBank accession numbers CN634509-CN641229
and ES417751-ES429084.
The MG2454 and SG454 datasets were produced via 454

pyrosequencing. For the MG2454 dataset, mRNA isolation,
cDNA synthesis, and DNA sequencing were performed by
the University of Illinois Carver Biotechnology Center
using the SuperScript Double-Stranded cDNA Synthesis
Kit (Invitrogen, CA) and GS Titanium Library Preparation
kit (454 Life Sciences, Branford, CT). The cDNA library
was normalized using the Trimmer Direct Kit (Evrogen),
and then sequenced using the 454 GS-FLX platform. For
the SG454 dataset, cDNA synthesis was performed by the
U.S. Department of Energy Joint Genome Institute (JGI)
using the SMART PCR cDNA Synthesis Kit (Clontech,
Mountain View, CA). The resulting non-normalized
cDNA library was sequenced by JGI using the 454
GS-FLX platform. The raw 454 sequences were deposited
in the NCBI Sequence Read Archive (SRA) under acces-
sion numbers SRA023776 and SRA051424.

Illumina short-read sequences
The CBIL and YKIL libraries were constructed at the
USDA Forest Service’s Pacific Northwest Research Station
using Illumina mRNA-Seq Prep Kits (San Diego, CA) with
minor modifications. To obtain strand-oriented reads, we
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used dUTP for second-strand synthesis, and then selec-
tively destroyed the dUTP-containing strand before the
PCR-enrichment step as described by Parkhomchuk et al.
[65]. Libraries were constructed using multiplex sequen-
cing adapters [66], and single-end reads of 80 nt were
obtained using multiplex sequencing on an Illumina
Genome Analyzer IIx at the OSU Center for Genome
Research and Biocomputing or Harvard FAS Center for
Systems Biology. The MG2IL and INTIL cDNA libraries
were constructed using the standard Illumina mRNA-
Seq Sample Prep Kit, and then sequenced on an
Illumina Genome Analyzer IIx for 2x101 cycles at the
Carver Biotechnology Center. The RNA previously used
for the MG2454 dataset was also used for the MG2IL
library, and the RNA isolated from interior Douglas-fir
was used for INTIL. The raw Illumina sequences were
deposited in the NCBI SRA under accession number
SRA051424.
Pre-assembly sequence processing for the reference
transcriptome
Prior to assembly, sequences in the MG1SANG, MG2454,
and SG454 datasets were cleaned as described below
(Figure 1). For the MG2454 and SG454 datasets, we used
Roche’s sffinfo utility to trim primer and adaptor sequences
and produce raw FASTA and quality files from the SFF
files. For Sanger sequences (MG1SANG), we performed
these same functions using phred [67]. We then used
the SnoWhite pipeline (http://www.evopipes.net/snowhite.
html), which combines Seqclean and TagDust, to remove
or mask polyA/T tracts; short, low-quality and low-
complexity sequences; and reads matching chloroplast,
mitochondrial, rRNA, or retrotransposon sequences. Our
filtering database contained (1) vector, adapter, linker, and
primer sequences from NCBI’s UniVec database (http://
www.ncbi.nlm.nih.gov/VecScreen); (2) chloroplast, mito-
chondrial, and ribosomal RNA (rRNA) sequences from
21 to 50 species that included conifers, Arabidopsis,
and Nicotiana (GenBank; http://www.ncbi.nlm.nih.gov/
genbank); (3) a nearly-complete reference of the coastal
Douglas-fir chloroplast genome (GenBank JN854170; [68]);
and (4) retrotransposon sequences from 27 species, includ-
ing Arabidopsis and Oryza sequences from the Plant Re-
peat Database (http://plantrepeats.plantbiology.msu.edu/)
and conifer sequences obtained from GenBank as described
by Parchman et al. [22]. Our final database of non-
redundant filter sequences was prepared by processing all
filter sequences through the NCBI BLASTclust program
[69] with the identity and coverage parameters set to 90%
(i.e., pairwise matches require sequences to be 90% identical
over 90% of their lengths). We then used the SnoWhite
pipeline to filter reads that had ≥ 96% sequence identity to
any sequence in this filtering database (Figure 1, Step 3)
We also filtered bacterial- and fungal-like sequences
from the datasets used for transcriptome assembly. These
sequences were filtered by first conducting a de novo
assembly of each 454 dataset (MG2454 and SG454) using
Newbler v2.3 (Figure 1, Step 4; discussed below). The
resulting isotigs and singletons (plus the Sanger sequences
from the dataset MG1SANG) were screened for homology
using BLASTN against a dataset of 27,720 white spruce
unigenes [16]; www.arborea.ca]. Non-matches (E-value >
10-5, bit score < 50, and identity < 96%) were subsequently
screened using BLASTN and two local databases: the
NCBI nucleotide collection (nr/nt) and NCBI non-human,
non-mouse ESTs (est-others). Assembled isotigs and sin-
gletons were filtered if the best hit had a bit-score > 50
and an E-value < 10-10, and the corresponding genus
name was found in a custom database of 162,679 bacterial
and 59,139 fungal names downloaded from the NCBI Tax-
onomy database (http://www.ncbi.nlm.nih.gov/Taxonomy)
(Figure 1, Step 5). After we removed the singletons and all
reads that assembled into the contaminating isotigs, the
original reads were re-assembled as described below
(Figure 1, Step 6). We also used the results from these
analyses to compare the number of contaminating fungal
and bacterial reads between the two 454 datasets.

Assembly of the reference transcriptome
We used Newbler v2.3 (Roche GS De Novo Assembler
v2.3; Roche Life Sciences, Inc.) to assemble the reads in
the MG1SANG, MG2454, and SG454 datasets into a single
reference transcriptome consisting of isogroups (unigene
models), isotigs (presumed transcript variants), and sin-
gletons ≥ 100 nt (Figure 1, Step 6). Prior to the final as-
sembly of all datasets, we first evaluated the impact of
alternative assembly parameters. De novo assemblies
were run using the transcriptome (-cdna) option, mini-
mum read length (-minlen) of 40 nt, isotig length
threshold (-icl) of 40 nt, a large contig threshold (-l) of
100 nt, plus a factorial arrangement of the following pa-
rameters: minimum overlap lengths of 35 and 45 nt;
alignment difference scores of -2 and -6; and minimum
overlap identities of 82% to 98%. The 20 resulting as-
semblies were evaluated based on the total numbers of
isogroups, number of isogroups represented by a single
isotig (I1 subset), and the number of isogroups repre-
sented by multiple isotigs (IM subset). We also evaluated
the assemblies by comparing the assembled isogroups to
white spruce unigenes using the approach described
below. Based on these evaluations, we performed the
final Newbler assembly using a minimum overlap length
of 45 nt, alignment difference score of -6, and a mini-
mum overlap identity of 96%. We clustered the resulting
isotigs using Vmatch (http://www.vmatch.de; –dbcluster
psmall = 99 and plarge = 99) to form a non-redundant set
of sequences, and then calculated the assembly statistics
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shown in Table 2 using custom Perl scripts. The refer-
ence transcriptome (i.e., 37,177 isotigs ≥ 200 nt) has
been deposited at DDBJ/EMBL/GenBank under acces-
sion GAEK01000000.

Comparison to white spruce and loblolly pine
We compared the Douglas-fir assembly to a set of white
spruce unigenes using SCARF, a sequence assembly tool
designed for assembling 454 EST sequences against a
reference sequence from a related species (Figure 1, Step
8) [17]. We downloaded 27,720 white spruce unigenes
constructed from Sanger sequenced ESTs [16]; www.
arborea.ca], and then used SCARF to determine where
Douglas-fir isotigs matched white spruce unigenes. The
combination of MegaBLAST parameters [70] used in
the SCARF analysis resulted in matches with a minimum
length of 40 nt, minimum identity of 77%, minimum
bitscore of 80, and maximum E-value of 2 × 10-13. Using
this information, we defined seven types of structural re-
lationships (C1 to C7) between Douglas-fir isotigs and
white spruce unigenes, and then assigned the isotigs to
these classes based on three criteria (Table 3). First, we
classified each isotig according to the number of white
spruce matches: no match (C7), one match (C1, C3, C4),
or matches to multiple white spruce unigenes (C2, C5,
C6). Multiple matches were counted only when the per-
cent identities were within 5% of the best match. Sec-
ond, we determined whether other isotigs matched the
same white spruce unigene, resulting in isotigs that were
classified as having no matching partners (C1, C2), and
those that did (C3 to C6). Finally, for the isotigs with
matching partners, we determined whether the partners
overlapped each other (C4, C6) or not (C3, C5). We then
assigned relative confidence scores to each isotig assem-
bly based on these relationship classes: C1 = Highest; C2
and C3 = Higher; C4 and C5 = Medium, C6 = Lower;
and C7 = Unknown.
We conducted the same SCARF analysis using loblolly

pine as the reference, but these analyses were completed
after the SNP array was constructed and tested. These
analyses were conducted using 35,550 contigs that com-
prise the first release of the PineDB transcriptome as-
sembly (PineDB v1.0; June 15, 2012; http://bioinfolab.
muohio.edu/txid3352v1/interface/download.php).

Annotation
We annotated the isogroups using a local tBLASTX [69]
search against the Uniref50 release 2010_09; [71] and
TAIR10 (TAIR10_pep_20101214; [72]) databases using
an E-value of 10-5 (Figure 1, Step 8). We then summa-
rized the results separately for the I1 isogroups, IM
isogroups, and singletons. For the IM set of isogroups, a
hit was counted only if all isotigs matched the same pro-
tein in the database; otherwise this isogroup was
considered unannotated. We also annotated sequences
using the Annot8r pipeline (http://www.nematodes.org/
bioinformatics/annot8r/index.shtml), which assigns GO
terms [73], EC numbers (http://www.chem.qmul.ac.uk/
iubmb/), and KEGG pathways [74] to protein or nucleo-
tide sequences from non-model organisms based on se-
quence similarity to protein sequences in the EMBL
UniProt database (http://www.uniprot.org/). We also
assigned GO-slim terms to the isogroups and singletons
using the results from the TAIR10 tBLASTX search. We
extracted GO-slim terms for the matching Arabidopsis
accessions from the TAIR10 database, and then com-
pared the distributions of GO-slim terms for the I1
isogroups, IM isogroups, and singletons versus the dis-
tribution of GO-slim terms for all 35,386 Arabidopsis ac-
cessions in the TAIR10 database (ftp://ftp.arabidopsis.
org/home/tair/Ontologies/Gene_Ontology/). Finally, we
assigned taxonomic affiliations to the isogroups and sin-
gletons using the results from the UniRef50 tBLASTX
search described above. We extracted the taxonomic as-
signment for each best-hit, and then summarized them
according to the categories shown in Table 5.

Processing of Illumina short-read sequences and analysis
of sequence orientation
Illumina short read sequences were mapped to the tran-
scriptome reference to identify SNPs. Some of the short-
read sequences contained strings of nucleotides with a
quality score of 2 (i.e., ‘B’ ascii character), which Illumina
uses to indicate that these calls should not be used for
downstream analysis. Therefore, we changed these posi-
tions to ‘N’s before read mapping and SNP detection
(Figure 1, Step 7).
We used the strand-oriented reads from the CBIL and

YKIL libraries to infer the orientation of the isotigs and
singletons. We used Bowtie v 0.12.7 (−M 1, -q, –n 2; [75])
and custom R scripts to count the number of unique
alignment locations where reads were mapped as direct
Illumina output (D) and as their reverse complements (C).
For each isotig and singleton, we summed D and C across
both strand-specific datasets, and then used a two-tailed
binomial test to test whether C was significantly greater or
less than D (P < 0.05), which would indicate the corre-
sponding isotig or singleton is in the forward (+) or re-
verse (−) orientation, respectively.

SNP detection
Flanking variants
The first step toward identifying likely SNPs and design-
ing SNP assays was to identify flanking variants (SNPs
and indels) using permissive criteria (Figure 1, Step 9).
We combined the Sanger and 454 sequences (MG1SANG,
MG2454, and SG454) into a single dataset, and then
aligned them to the reference using the BWA-SW
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program with default parameters [76]. For the Illumina
sequences (CBIL, YKIL, and INTIL), we used the
Novoalign short-read aligner with default parameters
(Novocraft Technologies; www.novocraft.com). We used
SAMTools [77] to output the alignment results to the
BAM format, and then used mpileup, BCFTools,
VCFutils, custom Perl scripts, and SAS (Statistical Ana-
lysis System, Cary, NC) to extract and summarize se-
quence variants. For these programs, we used the
following parameters: 20,000 = maximum number of
reads for calling a SNP, 20 = minimum mapping quality,
and 20 = minimum base quality to identify putative
SNPs. These SNPs were subsequently filtered using
more stringent criteria. Although we recorded indels
found within the query dataset or between the query
dataset and the reference, we only recorded SNPs found
within the queried dataset. That is, if the query dataset
differed from the reference, but had no called SNP itself,
we treated the variant as a sequencing error. Because
our input sequences were derived from pooled samples,
we did not filter variants based on probability values
from BCFTools (i.e., we used -p = 2.0 for the BCFTools
view and VCFutils programs). Instead, we estimated
SNP and indel probabilities from the mpileup output
using a custom Perl script that implemented the
methods described by Wei et al. [78], using a MAF value
of 0.01 and sequence error rate of 0.01. We also used
this Perl script to remove variants that had a total read
depth < 5 or < 2 alternative alleles in the dataset. For
each dataset, we compared variants detected using the
BCFTools/VCFutils programs versus our custom Perl
script, removed indels from the 454 dataset, merged the
five datasets, and then removed other variants that did
not meet a flanking probability threshold (PF) of 0.10 in
any single dataset or pooled across datasets (Figure 1,
Step 9). The pooled across-dataset probability was calcu-
lated using a chi-square test with 10 degrees of freedom,
where X2 equals −2Σln(pi), and Pi is the SNP probability
for each of the five datasets [79]. We then used a Perl
script to generate a reference sequence for each dataset
that identified all retained indel and SNP positions using
IUPAC codes, and these were combined to create a
comparable sequence for Douglas-fir.

Target SNPs
We filtered flanking SNPs to obtain sets of ‘target SNPs’
that could serve as a resource for future genotyping as-
says. In Figure 1, we show three output datasets based
on target SNP probabilities (PS) of 10-2, 10-3, and 10-4

(Figure 1, Step 10). To avoid redundant SNPs, this data-
base was developed using only the longest isotig from
each isogroup. For these datasets, we retained bi-allelic
SNPs that were not near a high-quality indel (i.e., did
not receive a BCFTools code of “G” in any dataset), had
a mapping quality score > 40 in at least one dataset, and
probabilities < 10-2, 10-3, or 10-4 in at least one dataset.
Using a SNP probability of 10-4, these criteria resulted in
278,979 potential SNPs for which we obtained Infinium
design scores. Design scores were obtained using four
different sequence datasets constructed using flanking
probabilities (PF) of 10-1, 10-2, 10-3, and 10-4 (Figure 1,
Step 11). The dataset of 278,979 potential SNPs
constructed using a PS of 10

-4 and PF of 10
-1 was used as

the starting point for constructing a genotyping array.
These SNPs have been deposited in the NCBI dbSNP
database under submitter handle HOWE_OSU, with ss
numbers ranging from 523,746,501 to 524,245,331.

Infinium genotyping array
We used additional criteria to filter the target SNPs to ob-
tain 8769 SNPs for testing on an Infinium II genotyping
array (Figure 1, Step 12). During this filtering step, we did
not consider SNPs from isotigs having low confidence
scores (C5 or C6). First, we selected SNPs in genes that
were differentially expressed during cold acclimation [58];
unpublished data] or had annotations suggesting they
were associated with growth, phenological traits, stress re-
sistance, or adaption to temperature or drought. For these
SNPs, we selected as many as two SNPs per isotig, exclud-
ing SNPs within 50 nt of each other. For the remaining
SNPs, we removed those not found in at least two
datasets, and then retained the most probable SNP in each
isotig (i.e., based on the mean probability across all
datasets). In the final filtering step, we retained all SNPs in
differentially expressed genes (see above), and then filtered
the remaining SNPs if they required two probes to assay
(i.e., Infinium I assay type = A/T and C/G SNPs), or had a
design score < 0.60, fewer than 10 quality reads, or a fre-
quency < 0.05 (i.e., based on mean values across datasets).
These criteria, which yielded 8769 SNPs, were specifically
chosen to be compatible with an Infinium II array [18]
that has a capacity of 9,000 attempted bead types.
We tested the Infinium array by genotyping 260 trees

of coastal Douglas-fir. DNA was isolated from ~50 mg
of frozen needles using the DNeasy Plant 96 Kits
(QIAGEN), genotyping was performed by the UC Davis
Genome Center according to protocols from Illumina,
and the resulting data were analyzed using Illumina
GenomeStudio software v2011.1 [80].
We assessed the quality of the resulting SNP loci

based on the Illumina GenTrain scores, GenCall scores,
SNP call frequencies, MAFs, and probabilities of devi-
ation from HWE (Figure 1, Step 13) [80]. Each of these
measures ranges from 0 to 1. GenomeStudio software
uses a custom algorithm to cluster the data for each
locus into homozygous and heterozygous classes, and
the GenTrain score reflects the quality of these clusters.
The calling algorithm then uses the GenTrain model
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and signal intensities to assign (“call”) a genotype for
each locus and tree. The GenCall score reflects the qua-
lity of this assignment, and can be used to judge the
quality of an individual SNP call, a SNP locus, or DNA
sample. For example, the median GenCall score (50%
GenCall score) is often used to judge the quality of SNP
loci. Another measure of locus quality is the call fre-
quency, or call rate, which is the number of successfully
called SNP genotypes divided by the number of DNA
samples (260 in our case). Based on the recommenda-
tion for the Infinium platform [19], we considered calls
with GenCall scores < 0.15 as unsuccessful (“no calls”).
In this paper, we report the numbers and characteristics
of high-quality SNP loci, which we defined as loci that
were polymorphic in our sample of 260 trees with call
rates ≥ 85%. We also identified SNPs that deviated from
HWE using the exact test described by Wigginton et al.
[81] and a probability level of 0.9 × 10-5 (i.e., Bonferroni-
corrected P-value of 0.05 based on 5847 SNPs). Finally,
we used SAS Proc Logistic and stepwise model selection
to determine whether the high-quality SNPs could be
predicted from 12 SNP bioinformatic characteristics.

Additional files

Additional file 1: Tables S1 and S2. Characteristics of the reference
transcriptome isotigs and isogroups. Information on the isotigs and their
associated isogroups is found on the ‘Isotig data (S1)’ worksheet and
variable descriptions are found on the ‘Variable descriptions (S2)’
worksheet.

Additional file 2: Tables S3 and S4. Characteristics of the reference
transcriptome singletons. Information on the singletons is found on the
‘Singleton data (S3)’ worksheet and variable descriptions are found on
the ‘Variable descriptions (S4)’ worksheet.

Additional file 3: Tables S5 and S6. Characteristics of the 278,979
putative SNPs summarized in Table 6. Information on the SNPs and their
associated isogroups is found on the ‘Target SNP data (S5)’ worksheet
and variable descriptions are found on the ‘Variable descriptions (S6)’
worksheet.

Additional file 4: Tables S7 and S8. The locus summary report from
Illumina’s GenomeStudio v2011.1 software and additional derived
variables are found on the ‘SNP Infinium results (S7)’ worksheet.
Descriptions of GenomeStudio variables (modified from, [19,80]) and
other variables are found on the ‘Variable descriptions (S8)’ worksheet.
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