Genetic Improvement of Wood Quality in Coastal Douglas-fir and Western Hemlock

Proceedings of a workshop organized by the
Pacific Northwest Tree Improvement Research Cooperative
and the
Northwest Tree Improvement Cooperative
Department of Forest Science, Oregon State University

June 27, 2002
Genetic Improvement of Wood Quality in Coastal Douglas-fir and Western Hemlock

Proceedings of a workshop organized by the
Pacific Northwest Tree Improvement Research Cooperative
and the
Northwest Tree Improvement Cooperative
Department of Forest Science, Oregon State University

June 27, 2002
at Oregon State University, Corvallis, OR

Compiled by Keith Jayawickrama,
Department of Forest Science
Format and design by Gretchen Bracher,
Forestry Communications Group
Oregon State University, Corvallis, OR 97331-5752
List of Speakers

<table>
<thead>
<tr>
<th>Speaker</th>
<th>Affiliation</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megraw</td>
<td>Retired, Weyerhaeuser</td>
<td>An overview of wood quality.</td>
</tr>
<tr>
<td>Briggs</td>
<td>Univ. of Washington</td>
<td>Wood quality and silviculture.</td>
</tr>
<tr>
<td>Cannon/Miller</td>
<td>Boise Cascade</td>
<td>Improving wood quality: is it important to the industry?</td>
</tr>
<tr>
<td>Rozenberg</td>
<td>INRA, Orleans, France</td>
<td>Wood quality research at INRA: implications for Douglas-fir tree improvement.</td>
</tr>
<tr>
<td>Jayawickrama</td>
<td>Oregon State Univ.</td>
<td>Genetic improvement of conifer lumber stiffness and strength.</td>
</tr>
<tr>
<td>Cartwright</td>
<td>BC Ministry of Forests</td>
<td>Genetics of wood properties in western hemlock.</td>
</tr>
<tr>
<td>Knowles/Shelbourne</td>
<td>New Zealand Forest Research Institute Ltd.</td>
<td>Improving wood and stand quality of New Zealand’s Douglas-fir plantations.</td>
</tr>
<tr>
<td>Jayawickrama</td>
<td>Oregon State Univ.</td>
<td>Tree improvement recommendations and research needs.</td>
</tr>
</tbody>
</table>
PREFACE

A healthy, well-managed plantation of Douglas-fir or western hemlock is a joy to behold (at least for most foresters). However, more than adorning the landscape, the real purpose of growing commercial plantations is to produce trees that will be harvested and eventually turned into useful products. We should never lose sight of the impact that wood quality has on the quality of these final products.

The best approach to genetic improvement of wood quality in plantations has been debated for years. One approach recognizes that the trees will be harvested many years from now and turned into products we can’t foresee using technologies we haven’t imagined. According to this view (the “find them and grind them” philosophy), we should ignore wood quality, grow trees as fast as we can at the lowest possible cost, and then let future mills, chemists and technologists work their magic. At the other end of the spectrum is the view that genetic improvement is a low-cost, environmentally friendly and effective way to guarantee superior wood properties at the time of planting. Some growers are therefore willing to invest heavily in wood quality research, and carefully screen genotypes for wood quality before using their progeny in plantations. Without a crystal ball, however, some faith is needed to conclude that efforts to improve wood quality will be amply rewarded in the future. One hurdle is that many wood properties are more costly to measure than are height or diameter. In addition, perceptions vary because some growers process their own logs, whereas others only sell logs or stumpage. With all these nuances, most organizations involved in tree improvement fit in somewhere between the two views described above, paying more or less attention to the genetic improvement of wood quality as their inclinations, world-views and circumstances dictate.

The objective of our workshop was to summarize key aspects of wood quality in Douglas-fir and western hemlock — the two main species of interest to our cooperators. We tried to provide an overview of wood quality, its relevance to growers, and factors (both genetic and non-genetic) that influence wood quality. A one-day workshop cannot hope to capture all the information on such an important topic; however we hoped to at least raise the level of understanding and to stimulate thinking, debate, research and action. The workshop was attended by 49 people from Oregon, Washington, Idaho, British Columbia, New Zealand and France. We thank the 10 authors of invited presentations who generously contributed their time (travelling from afar in some cases) and shared their valuable insights, the participants, and Thimmappa Anekonda, Judy Han, Gancho Slavov, Denise Steigerwald and Igor Yakovlev, who played various roles in running the workshop.

We hope these proceedings serve as a reference and reminder of the topics covered, and that the workshop leads to better-informed decisions regarding wood quality improvement in the Pacific Northwest.

Keith Jayawickrama, Director
Northwest Tree Improvement Cooperative
Glenn Howe, Director
Pacific Northwest Tree Improvement Research Cooperative
Wood Quality Overview

Bob Megraw
Retired (Weyerhaeuser Co.)

bob megraw@aol.com

WHAT IS QUALITY WOOD (structural species)?

- Strong
 - High MOR (breaking strength) – doesn’t fail under load
 - High MOE (stiffness) – doesn’t sag

- Straight
 - No crook
 - No twist

WHAT AFFECTS WOOD QUALITY?

- Knots
- Straightness of grain
- Compression Wood
- Fundamental Properties
 - Specific gravity
 - MFA – (S2 microfibril angle)
Specific Gravity

Microfibril Angle

Douglas – fir

Western Hemlock

MOE vs. Juvenile Wood Percent

Clearwood Stiffness variation in loblolly pine and its relationship to specific gravity and microfibril angle

24 Trees (pamlico-4, N.C.)

6 Heights above Stump
1 ft, 4 ft, 7 ft, 10 ft, 13 ft, 16 ft

6 Ring Positions from Pith
3, 5, 7, 10, 15, 20

Individual-Ring Testing for MOE in Bending

\[
\text{MOE} = \frac{PL^3}{(\text{def})18bd^3}
\]

MOE by Ring No. from Pith – Loblolly pine
Microfibril Angle

Lobolly Pine
- 24 trees
- Pamlico-4

Douglas Fir
- 29 trees
- Abernathy Ridge

- earlywood
- latewood

Avg. Board Crook vs. Disc Longitudinal Shrinkage by Shrinkage Quartile
- 36 Trees Total

<table>
<thead>
<tr>
<th>1st log</th>
</tr>
</thead>
<tbody>
<tr>
<td>log-1</td>
</tr>
<tr>
<td>log-2</td>
</tr>
<tr>
<td>1st quartile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd log</th>
</tr>
</thead>
<tbody>
<tr>
<td>log-1</td>
</tr>
<tr>
<td>log-2</td>
</tr>
<tr>
<td>log-3</td>
</tr>
<tr>
<td>log-4</td>
</tr>
<tr>
<td>2nd quartile</td>
</tr>
</tbody>
</table>

Avg. Disc % Longitudinal Shrinkage (green to O.D. for rings 3, 5, 7, 10, 15, 20)

Longitudinal Shrinkage as a Function of Height
- Lobolly pine

- n = 24 trees

Lobolly pine

Longitudinal Shrinkage
- Pamlico-4
- n = 24 trees

Microfibril Angle
- Pamlico-4
- n = 24 trees
Practical Implications:

- Can we use MFA to screen out extreme longitudinal shrinkage trees? Yes
 – Lobolly pine

Percent Longitudinal Shrinkage vs. Ring No. from Pith

Green to Oven Dry

Lobolly pine
(35-tree Avg.)

Western hemlock
(19-tree Avg.)

Douglas-fir
(32-tree Avg.)

Graphs and Tables

- **Longitudinal Shrinkage in Pine and Fir**
- **Percent Longitudinal Shrinkage vs. Mean MFA Rings**
- **% Longitudinal Shrinkage vs. Average MFA**
- **% Longitudinal Shrinkage vs. Ring No. from Pith**
Summary

• Modulus of elasticity (MOE) varies dramatically and systematically with height in tree and ring from pith.

• Most variation in MOE (but not all) is due to variation in MFA and Sp. Gr.

• Variability (absolute) in MOE among trees is much less for inner-rings than for outer rings.

• Differential LS is the cause of crook. LS correlates with mfa in inner rings in the lower portion of the tree, where mfa is large. Mfa can be used to estimate which trees will rank in upper and lower brackets for LS.

Key Recommendations:

• Make wood property comparisons only on a very specific ring and height basis (values are very sensitive to ring position and height).

• Don’t forget the 3rd dimension. Trees differ in height profile as well as ring-age profile.

• While end-use (resultant) properties (MOR, MOE, etc.) can be valuable screening tools, actual tree impr. efforts should be founded on individual basic properties (resultant properties involve more than one basic, each basic differing in heritability and influence on the resultant).
Genetic Improvement of Wood Quality in Douglas-fir and Western Hemlock

A joint workshop organized by the PNW Tree Improvement Research Cooperative and the Northwest Tree Improvement Cooperative

Why have a workshop?

- **Technology transfer** – a lot of research has been done that could be put into practice
- **Workshop** – we need to develop a scientific consensus on some issues
- **Scientists need feedback from practitioners** – let's hear from the participants!
- **Goal** – provide information needed to make concrete decisions about tree improvement practices and research

Challenges

- **Be careful about selecting too many traits**
 - The more traits - the less gain you get in each trait
 - Should wood quality be included?
 - If so, are there 1-2 key traits that should be considered?

<table>
<thead>
<tr>
<th>No. of traits selected</th>
<th>Selected tree is the best out of</th>
<th>Per cent superiority of selected trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>3.37</td>
</tr>
<tr>
<td>2</td>
<td>31.6</td>
<td>2.06</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>1.54</td>
</tr>
<tr>
<td>4</td>
<td>5.62</td>
<td>1.23</td>
</tr>
<tr>
<td>5</td>
<td>3.98</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Thanks to:

Organizers
Keith Jayawickrama
Thimmappa Anekonda
Cheryl Alex
Judy Han
Gancho Slavov
Denise Steigerwald

Speakers
Bob Megraw
Phil Cannon
Larry Miller
David Briggs
Randy Johnson
Barbara Gartner
Philippe Rozenberg
Charlie Cartwright
Leith Knowles
Tony Shelbourne

PNW Tree Improvement Research Cooperative
Northwest Tree Improvement Cooperative

A joint workshop organized by the
and the

Genetic Improvement of Wood Quality in Douglas-fir and Western Hemlock
Challenges

Which traits impact tree value?
- Breaking strength (MOR)
- Stiffness (MOE)
- Crookedness/Straightness
- Sinuosity
- Branch/Knot size
- Branch angle
- Grain straightness
- Amount of compression wood
- Ramicorn branching/Forking
- Specific gravity
- Microfibril angle (MFA)
- etc

Challenges

We must predict the future
- Materials being bred today may not be harvested for at least 50 years
- What will these trees be used for?
- What grading criteria will be used? Visual? Mechanical?

Challenges

Can we come up with provisional answers to these difficult questions?
Wood Quality and Silviculture
PNWTRC/NWTIC Workshop “Genetic Improvement of Wood Quality in Coastal Douglas-fir and Western Hemlock”
June 27, 2002, Oregon State University, Corvallis, OR

Dr. David Briggs, Director
College of Forest Resources
Box 352100
University of Washington
Seattle, WA.

Outline
- Definitions
- Some Key Properties
- Silviculture Effects
 - Thinning & Fertilization
 - Wide Planting Spacing
 - Early (pre-commercial) Thinning
 - Pruning
- The Bottom Line
- Conclusions

I. Definitions
A. Quality: “fitness for use”

Process of Creating Quality in the Context of Wood

B. Silviculture: techniques to alter growth trajectories

Relating Silviculture and Quality
II. Some Key Properties
A. Fiber: geometry, microfibril angle

B. Wood Properties (fiber aggregates)
1. Specific gravity (relative density)
 - wood substance per unit volume
 - % of earlywood & latewood; related to most other properties

2. Mechanical properties (clear wood)
 - baseline in absence of knots & other defects

3. Growth Rings
 - ring width “growth rate”: wide vs narrow
 - % latewood a surrogate for wood density

C. Large Scale Aggregations
1. Juvenile and Mature Wood
 - 10 ring zones painted on log ends:
 - 70 year old vs 30 year old logs
Properties do not transition from JW to MW at the same age

When is the change no longer important? Lots of variability!

2. Compression wood
Leaning trees, branches, other de-stabilizing events

3. Branches (knots)
Aesthetics, degrade of mechanical properties, interfere with remanufactured cuttings

3. Branches (knots)
Aesthetics, degrade of mechanical properties, interfere with remanufactured cuttings

BH Branches: an early indicator
Diameter of largest branch in 1st whorl above BH increases
- as the stand becomes older
- in stands with larger QMD
- In lower density stands

4. Stem Form (taper, sweep, crook, etc)
Deviant grain in products, compression wood
Reduce yield of lumber & veneer

5. Deviant grain
Spiral grain, diagonal grain, areas near knots
III. Silviculture Effects

A. Thinning and Fertilization

1. General Response

- If increase available resources by thinning, fertilizing, or both
- Trees respond with
 - more foliage,
 - slower crown recession (larger branches)
 - greater photosynthetic production
 - more wood formation (volume and altered properties)
- But progress toward competitive state → volume & property changes are temporary

Let's T & F a 25-35 year old tree

Let's T & F a 25-35 year old tree

T/F effect on Top with upper live crown & young JW

- Larger knots
- Volume added: JW until transition to MW moves into this position
- 100% JW % until MW transition
- Increased ring width (?)
- Pieces small but longer
- Log/lumber grades (low)
- $?

T/F effect on Middle with lower live crown & JW/MW transition

- Larger knots: growth boost & slower crown recession
- Volume added: mix of older JW followed by MW as transition moves up tree
- High JW % decreases with more MW
- Increased ring width
- Somewhat larger pieces
- Log/lumber grades (?)
- $?
2. T/F Effects on Mature Wood

- Fiber: shorter, larger diameter, thinner walls, larger microfibril angle (small changes; important??)
- Specific gravity: usually decreases; peak change 5-10% & return to normal over time (~5 years)
- Growth rings: abrupt change from narrow to wide
- Compression wood: may form due to heavier crown & wind
- As stand rebuilds competitive state, effects diminish
- Thinning can improve residual stand quality by removing poor quality trees, smaller trees, etc.; can degrade residual stand quality by removing better trees

3. T/F Effects on Juvenile Wood

- Little research but effects appear to be minimal due to the strong effects of physiology on development of wood from young cambia
- What happens closer to the transition age?

- Young JW
- Older JW
C. Wide Planting Spacing

- Large tree in short time
- Short rotation
 - Wide rings
 - Large diameter JW core, high JW %
 - Slow crown recession = large branches
 - Low product value
Initially, wide spaced trees do not grow as well = “crossover effect”
- Avoid early operation costs: a fantasy

D. Early Thinning

- Pre-empts competition
- Rapid growth maintained
- Large tree diameter reached more quickly
- Short rotation
- Wide growth rings
- Large JW core diameter
- Large branches

E. Pruning

- Production of clear wood
- Aesthetics, understory growth enhancement, habitat, etc.

Pruning Questions and Concerns

- Stem growth & form
- Heal-over (occlusion)
- Douglas-fir pitch moth attacks
- Epicormic branches
- Branch diameter growth above the pruning lift
- Change in wood quality

Growing Basal Area Growth

- 20%, 40%, 60% crown removal
- Slight increase (?) in growth from 0-20% is not significant
- Steeper decline from 40-60%, than from 20-40%
Diameter Growth

- Monotonically declining
- Steeper decline from 40-60% than from 20-40%

Height Growth

- Steeper decline from 40 to 60% than from 20 to 40%
- Height growth difference due to density is not significant

Stem Form (Taper)

- **DBH = 1**
 - Y-axis is diameter as a fraction of DBH
- Total Height = 1
- Manuscript in development

Occlusion: (9-22 year-old Douglas-fir)

- **Time:** 1 to 14 years
- Increases if:
 - tree is larger in diameter
 - larger distance from inside bark to stub end (bark thickness, nodal swelling, protruding stub)
 - branch is already dead
 - jagged splintered pruning cut
 - tree grows slowly after pruning
- Petruncio et al 1997

Diameter over stubs, Diameter over occlusion, defect core & clear wood yield

- Prune small diameter, vigorous trees to minimize defect core in the final log!
3. Douglas-fir pitch moth

4. Epicormic Branches

5. Growth of remaining branches above pruning lift

6. Pruning Effect on Wood Properties

IV. The Bottom Line
- **Lumber**
 1. **Material Balance**

 - % lumber
 - increases with increasing diameter
 - decreases with increasing taper

 ![Graph](image1)

- **2. Visual Lumber Grade**
 - Select Structural disappears with 1.5 inch LLAD
 - No. 1 disappears with 2.0 inch LLAD
 - LLAD = average of largest limb in each log quadrant

 ![Graph](image2)

- **3. Machine Stress Rated Lumber Grade**
 - 2100f & better disappears with 75% Juvenile wood
 - If knots are >=2 inches > 60% is No 3 & Economy

 ![Graph](image3)

- **B. Veneer**
 1. **Veneer Material Balance**

 - % Veneer
 - increases with increasing diameter
 - decreases with increasing taper
 - Decreases with larger LLAD

 ![Graph](image4)

- **2. Visual Veneer Grade**

 - A/B disappears with 1.5-2.0 inch LLAD
 - >50% is D & Utility for LLAD > 2 inches

 ![Graph](image5)

- **C. S/A Gain of T/F After 22 Years**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Log Value</th>
<th>Visual Grade Lumber Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Only</td>
<td>$3,625</td>
<td>$5,683</td>
</tr>
<tr>
<td>Biosolids Only</td>
<td>$1,142</td>
<td>$2,107</td>
</tr>
<tr>
<td>Thin & Biosolids</td>
<td>$9,069</td>
<td>$10,708</td>
</tr>
</tbody>
</table>

 Value impacts are not additive!

 ![Graph](image6)
V. Conclusions

Quality can have a variety of contexts: be sure you know what is important for the specific product of interest.

To evaluate silviculture effects be sure you are aware of:
- What were pre-existing conditions?
- Age?, Site?, Stand density?, Etc.
- How much do treatments alter resource availability and competition?
- How frequently are treatments repeated?
- Effects of combinations may not be additive!

Recommendations

Research is needed on the effects of silvicultural treatments and regimes during the early stages of development especially:
- Properties of JW
- How long a tree produces JW
- Can differences between JW and MW be made more uniform via genetic selection?
- Research is needed on early branch development and number/size of knots. Genetic selection?
- Need to improve integration of silviculture/quality/product value effects in growth models.

References

References, cont.

Recommendations

Research is needed on the effects of silvicultural treatments and regimes during the early stages of development especially:
- Properties of JW
- How long a tree produces JW
- Can differences between JW and MW be made more uniform via genetic selection?
- Research is needed on early branch development and number/size of knots. Genetic selection?
- Need to improve integration of silviculture/quality/product value effects in growth models.

References

References, cont.

An Industrial View of Douglas-fir Wood Quality

Phil Cannon & Larry Miller
Boise Cascade Corporation

Recipe for Successful Research

1) Know what you want
2) Figure out what is possible
3) Develop a plan to achieve what is possible
4) Go for it

A rough paraphrase of Scott Wallinger, VP for Forest Research at Mead-Westvaco

Consumption timber, pulp & paper 1997

Key:

This shape represents 100 million cubic metres Round Wood Equivalent volume.
Areas shown are directly proportional to volume.

Production industrial round wood 1997

Key:

This shape represents 100 million cubic metres. Areas shown are directly proportional to volume.

Source: FAO Production of Forest Products, 1997
Forest Industry Faces Two Major Challenges:

• To meet the demands and aspirations of people for wood and fiber from a world population that will approach 9-10 billion people by 2050
• To manage forests at high intensity on fewer acres in a world that values biodiversity and nontimber forest values

Scott Wallinger
VP for Mead-Westvaco

Things that Make Trees Grow Faster

• Choice of site
• Site preparation
• Genetic improvement
• Use of vigorous containerized stock
• Weed control (herbicides)
• Fertilization (several times)
• Thinning
• Maintenance of forest health

HOW FAST CAN TREES BE EXPECTED TO GROW

The future

The Present

One Effect of Growing Douglas-fir faster

Small juvenile core

Big juvenile core
One Effect of Growing Douglas-fir faster

An Implied Mandate

• “Unless you get the wood strength issue sorted out, I am not going to get very excited about moving Doug-fir to a short rotation (e.g., 32 years).”
 Russ McKinley
 Western Oregon Timberlands Manager
 Boise Corp.

Alternatives for Meeting Wood Strength Needs

• Re-design the product
• Modify the silviculture
• Find and sort the strong wood better
 Radar, NIR (sp), Hitman, Philippeís approach
• Go off-shore
• Traditional tree breeding
• Biotechnology

Modify the silviculture

• Start with vegetatively propagated material that is ontogenically five years old
• Favor silvicultural practices that promote late growing-season growth
• Wait to supe up the silviculture until the plantation is 15 years old
Biotechnology

- Identify genes that confer a propensity to transition to mature wood faster, increase ratio of latewood to earlywood, increase density of earlywood, latewood, or overall within-ring density, reduce microfibril angle
- Transfer these genes into somatic embryos of elite clones for mass propagation

Genetic Differences in Veneer Quality

Douglas-fir Wood Quality and Veneer Study

- Objectives:
 - Develop correlations between indirect methods of wood quality estimation and veneer strength
 - Develop correlations between wood specific gravity measured by non-destructive means and veneer strength

Douglas-fir Wood Quality and Veneer Study

- Objectives:
 - Develop correlations between direct and indirect measures of wood quality, and strength of engineered wood products
 - Develop a better understanding of how changes in wood specific gravity veneer strength

- Old field sites; vegetation control only; no fertilization
- Spacing 9 x 9 feet; no thinning
- DBH (ob): 9.9-14.6i with mean of 12.1i
- Height: 57-95i with mean of 79
Douglas-fir Wood Quality and Veneer Study

- Two half-sibs from each of 18 families ñ 36 trees total
- Families selected based on range of breast height specific gravity known to exist at age 15 (0.341-0.461)

Douglas-fir Wood Quality and Veneer Study

- Standing trees
 - Increment cores taken at breast height, bark to pith
 - NIR spectra captured in bore holes
 - Pilodyn penetration at 4 cardinal directions

Douglas-fir Wood Quality and Veneer Study

- Cut logs
 - Each 108" peeler block was individually labeled
 - Sonic wave readings taken on each block
 - Blocks debarked, steamed, and peeled in early December, 2001
 - Recovered ~ 850 sheets, 54" wide

Douglas-fir Wood Quality and Veneer Study

- Veneer
 - Intact 54"s were individually labeled and shipped to Medford plywood mill
 - Veneer was dried and graded by Metriguard

Douglas-fir Wood Quality and Veneer Study

- Preliminary Results:
 - Mean Pilodyn penetration moderately well correlated with breast height specific gravity

\[r^2 = -0.57 \]
Preliminary Results (continued)

Genetic differences between trees

Tree A

<table>
<thead>
<tr>
<th>Specific Gravity</th>
<th>Mean Pilodyn</th>
<th>Total Height</th>
<th>Block</th>
<th>G2</th>
<th>G1</th>
<th>wet</th>
<th>xd</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.425</td>
<td>13.5</td>
<td>12.8</td>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tree B

<table>
<thead>
<tr>
<th>Specific Gravity</th>
<th>Mean Pilodyn</th>
<th>Total Height</th>
<th>Block</th>
<th>G2</th>
<th>G1</th>
<th>wet</th>
<th>xd</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.425</td>
<td>13.5</td>
<td>12.8</td>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where to from here?

- Lay up test panels with sub-set of sheets covering range of grades
- Determine ability of Metriguard to accurately identify strong veneer
- Data analyses of direct and indirect methods of measuring and estimating wood quality and veneer strength
- Investigate potential for assessing trees in genetic tests for wood quality and veneer strength
Variation in Wood Density in Coastal Douglas-fir
(and the relationship of growth and wood density)
Randy Johnson
and
Barbara Gartner

In addition to Megraw 1985, check out the following for variation with trees:

Variation must be examined with regard to scale:
- Within ring
- Within tree
- Within a stand
- Among stands and regions

Wood density of earlywood and latewood
(Josza and Middleton 1995)

<table>
<thead>
<tr>
<th>Site</th>
<th>Earlywood</th>
<th>Latewood</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonald</td>
<td>0.272</td>
<td>0.550</td>
<td>0.49</td>
</tr>
<tr>
<td>Beaver Crk</td>
<td>0.380</td>
<td>0.824</td>
<td>0.46</td>
</tr>
<tr>
<td>ODF study</td>
<td>0.329</td>
<td>0.688</td>
<td>0.48</td>
</tr>
<tr>
<td>Vargas-Hernandez</td>
<td>0.347</td>
<td>0.768</td>
<td>0.45</td>
</tr>
<tr>
<td>Nimpkish</td>
<td>0.292</td>
<td>0.674</td>
<td>0.43</td>
</tr>
<tr>
<td>Haney</td>
<td>0.284</td>
<td>0.637</td>
<td>0.45</td>
</tr>
<tr>
<td>Molalla</td>
<td>0.319</td>
<td>0.662</td>
<td>0.48</td>
</tr>
<tr>
<td>Valley</td>
<td>0.271</td>
<td>0.671</td>
<td>0.40</td>
</tr>
<tr>
<td>Dorena</td>
<td>0.293</td>
<td>0.702</td>
<td>0.42</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.310</td>
<td>0.686</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Where to find information on variation patterns

Dave Cown’s Ph.D. thesis
• 1995- Severely infected stand identified

• 1996-2000 – Three 5-acre plots sprayed with Bravo (adjacent control plots established too)

• 2000/2001 – Growth plots established and felled

• 2001 – X-ray densitometry on disks (20 trees in each of 6 plots)

• 2001 – Moisture contents sampled in May and September (20 trees in each of 6 plots)

What do you say in coastal Oregon when you see:

• Decreasing ring width
• Increasing proportion of latewood

Swiss Needle Cast!

or

Normal growth?

What do you say in coastal Oregon when you see:

• Decreasing ring width
• Increasing proportion of latewood

Swiss Needle Cast!

History of ODF Bravo Plots

• 1995- Severely infected stand identified
• 1996-2000 – Three 5-acre plots sprayed with Bravo (adjacent control plots established too)
• 2000/2001 – Growth plots established and felled
• 2001 – X-ray densitometry on disks (20 trees in each of 6 plots)
• 2001 – Moisture contents sampled in May and September (20 trees in each of 6 plots)
Wood density variation sources

• 11% among trees, 89% within trees (Gartner et al. 2002)
• 15% among stands, 85% among trees

Within-Stand Variation Patterns

Why less water and more air?

• Air embolisms occur daily
• Tree can repair the plumbing
• Girdled tree studies (Salleo et al. 1996, Zwieniecki and Hollbrook 1998) show more moisture above girdle
• Need energy to fix the embolisms
• Less energy in the sick trees

Implications:

• Poor plumbing system in SNC infected trees (controls): less sapwood, less moisture content, and more air
• This is probably a function of less crown and lower energy supply
• Fresh weight of an equal volume of logs is 7.4% greater for Bravo-sprayed logs:
 – Control wet density = 0.79
 – Bravo wet density = 0.85

Sapwood Properties of Infected Trees

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Bravo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Width</td>
<td>1.02</td>
<td>1.88</td>
</tr>
<tr>
<td>EW width</td>
<td>0.49</td>
<td>1.13</td>
</tr>
<tr>
<td>LW width</td>
<td>0.53</td>
<td>0.75</td>
</tr>
<tr>
<td>LW %</td>
<td>56.2%</td>
<td>50.1%</td>
</tr>
<tr>
<td>% Water</td>
<td>41%</td>
<td>48%</td>
</tr>
<tr>
<td>% Air</td>
<td>27%</td>
<td>21%</td>
</tr>
<tr>
<td>% Wood</td>
<td>32%</td>
<td>31%</td>
</tr>
</tbody>
</table>
Don’t confound within-tree variation with among-tree variation

- Developmental changes
- Annual climate effects
- Must account for both when comparing among trees or among stands
Reasons for adverse correlations

- Genetics – genes which increase growth decrease density
 - Faster growing trees have more earlywood
 - Less dense earlywood and/or latewood
- Environmental factors which increase growth decrease density
- Environmental factors affecting earlywood and latewood can operate independently

Stand to stand variation

Mostly studied in the 50’s and 60’s, before X-ray densitometry
Western Wood Density Survey (1965)
-Cored 9,133 trees
Regression analysis of the Cascades plots
- Density = , Latitude
- Density = , Elevation
- r^2 not very large
- Same trend found in pines

Knigge 1962
- 51 stands in OR and WA
 4 trees per stand (dom. – int.)
- Density increased with
 - yield class
 - elevation
 - To a minor degree
 - growing season precipitation
 - growing season temperature
- r^2 not overly impressive

Lassen and Okkomen 1969
- 45 stands in OR and WA Cascades
- Density = , Summer precip
- Density = , Elevation
- $r^2 = 0.53$
Cown and Parker (1979) used Kim Ching’s trials
- 17-year-old trials
- No provenance differences
- Indication of site * provenance interaction

Wilcox in New Zealand
- 45 provenances on 3 sites
- Significant provenance variation
- Significant provenance * site interaction

McKimmy’s crew used Munger and Morris 1916 Douglas-fir heredity trial
- 10 OR and WA provenances
- 2 or 4 test sites
- Significant provenance variation
- Significant family * site and provenance * site interactions

Thoby in France
(quoted from Cown 1976)
- (25 provs on 1 site)
- Significant provenance variation

Typical Ranges in Provenance Differences

<table>
<thead>
<tr>
<th>Study</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cown & Parker 1979</td>
<td>No differences</td>
</tr>
<tr>
<td>McKimmy 1966</td>
<td>0.414 to 0.449</td>
</tr>
<tr>
<td>Abdel-Gadir, Krahmer, McKimmy 1993</td>
<td>0.459 to 0.500</td>
</tr>
<tr>
<td>Wilcox 1974</td>
<td>0.360 to 0.410</td>
</tr>
<tr>
<td>Thoby 1975 (from Cown 1976)</td>
<td>range = 0.035</td>
</tr>
</tbody>
</table>

Summary - Provenance Variation
- Range in provenance means is about 10%, i.e., about 0.05 g/cc range and mean 0.45 g/cc
- Provenances do not consistently rank the same across sites
- Most of the genetic variation is associated with families within provenance
- Little opportunity to increase density with provenance selection (must also consider provenance effect on growth / adaptability)
Genetics

- Provenance variation will provide little improvement
- Breeding programs using family variation
 - Density vs growth
 - (can’t have your cake and eat it too)
 - 7% increase max
 - 0% is the goal for most programs

Environment and Density

- Patterns observed are probably a function of environment, not genetics
- Consistent pattern of increasing density with lower elevation and more southerly latitude
- N fertilization decreases density (short term)
- Summer moisture decreased density in 2 or 3 studies

Conclusions – Growth-Density

- • temp or • growing season = • density
- Improved soil factors = • density

- Therefore, improved growth can have a mixed effect on wood density, must know the reason for improved growth rates.

NWTIC data

(an example)

Height and Density for 4 Local Breeding Cooperatives

How can we improve density now that we know something about its variation patterns?
Stand location variation

- Not usually an option for altering density (but seems to becoming more common)
- Trends of increasing density with lower elevation and more southerly latitude (but not a very reliable predictor)

To increase wood quality…

INCREASE ROTATION LENGTH

Spend more time out of the juvenile core

% Mature Wood

<table>
<thead>
<tr>
<th>Log</th>
<th>30 yr</th>
<th>35 yr</th>
<th>40 yr</th>
<th>45 yr</th>
<th>50 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butt</td>
<td>38%</td>
<td>55%</td>
<td>65%</td>
<td>71%</td>
<td>75%</td>
</tr>
<tr>
<td>2nd</td>
<td>2%</td>
<td>9%</td>
<td>38%</td>
<td>55%</td>
<td>65%</td>
</tr>
<tr>
<td>3rd</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>9%</td>
<td>38%</td>
</tr>
</tbody>
</table>
Genetics of wood specific gravity in coastal Douglas-fir

Randy Johnson
and
Keith Jayawickrama

PNWTRC / NWTIC workshop on Genetic Improvement of Wood Quality in coastal Douglas-fir and western hemlock
June 27, 2002
Oregon State University, Corvallis, OR

Conclusions
• Wood specific gravity is highly heritable.
• Probably need to sample more trees per family than we do at present.
• There is a negative genetic correlation between core length and wood specific gravity.
• The losses in specific gravity are less than expected, and about 1/10 the gain in height growth.
• Need to continue assessing the SPG of selections, and use as a culling factor in breeding and orchards
• Within BUs, no consistent relationship found with parent tree origin (elevation, latitude, longitude)

Two Specific Objectives
• Document genetic variation patterns in NWTIC programs.
• Examine the relationship between wood specific gravity and growth

Background
• Wood specific gravity considered an important predictor of wood quality
• Inheritance of wood specific gravity has been reported
• Selected first for height, diameter and stem form in 1st-generation co-op programs
• Co-operators also wished to prevent losses in specific gravity

Available Co-op Data
• 21 Test Sites (EPs)
• 15 Breeding Units (6 BUs sampled 2 sites)
• 658 Families

Background
• For each selection, (usually) went to a single progeny test site and cored trees
 - 6 progeny per parent selection ***
 - Any individual forward selection
 - 30 random trees to get stand average ***
• Standard water displacement technique
 - Measured volume and dry weight of last 5 rings
 - Specific gravity = dry weight / volume
Data Limitations

- Truncated data (families highly-ranked for growth and form)
 - Not all variation will be observed
 - Slightly bias correlations between traits (downward)
- Can only examine the correlated response in specific gravity when selecting for growth, not vice-versa.

Genetic parameter estimates

- Use the data from the 6 progeny at a site
- Estimate heritability (proportion of variation under genetic control)
- Estimate correlations of core specific gravity with diameter increment (as a function of core volume)

Correlations between parent tree location (within BU) and specific gravity

- Variables examined:
 - Elevation
 - Latitude
 - Longitude
- Regression using differences from mean of selections
- NO CONSISTENT RELATIONSHIPS FOUND

Estimates of Realized Gain (Specific Gravity)

- Looked at the difference between wood specific gravity for the cored families and the 30 random trees at that site.
 - For all the cored families, and
 - For the tallest 10 families (based on multiple test sites) per set
Estimates of Realized Gain (growth)

- Looked at difference in growth between selected families and:
 - Trial mean
 - Using data from all progeny test sites
 - Using data for the individual site-set combination
 - Selected families:
 - All selections
 - Best 10% in the set based on age-10 height

Proportion of specific gravity variation attributed to genetics

<table>
<thead>
<tr>
<th>Study</th>
<th>Heritability</th>
</tr>
</thead>
<tbody>
<tr>
<td>King et al. 1988</td>
<td>0.90</td>
</tr>
<tr>
<td>Bastien et al. 1985</td>
<td>> 0.8</td>
</tr>
<tr>
<td>NWTIC Data</td>
<td>0.72</td>
</tr>
<tr>
<td>Loo-Dinkins and Gonzalez 1991</td>
<td>0.54 ± 0.71</td>
</tr>
<tr>
<td>Vargas-Hernandez and Adams 1991</td>
<td>0.59</td>
</tr>
<tr>
<td>St. Clair 1994</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Some NWTIC age-10 height heritabilities

<table>
<thead>
<tr>
<th>Local Co-op</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernona</td>
<td>0.13</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>Umpqua Coast</td>
<td>0.20</td>
<td>0.12</td>
<td>0.25</td>
</tr>
<tr>
<td>Burnt Woods 1</td>
<td>0.18</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Snow Peak</td>
<td>0.22</td>
<td>0.10</td>
<td>0.38</td>
</tr>
<tr>
<td>Gold Beach</td>
<td>0.17</td>
<td>0.03</td>
<td>0.32</td>
</tr>
<tr>
<td>Medford</td>
<td>0.11</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>Nehalem</td>
<td>0.30</td>
<td>0.12</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Correlations between growth and wood specific gravity

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual tree</td>
<td>-0.36</td>
<td>-0.50</td>
<td>-0.03</td>
</tr>
<tr>
<td>Family mean</td>
<td>-0.37</td>
<td>-0.94</td>
<td>0.58</td>
</tr>
<tr>
<td>Genetic</td>
<td>-0.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlations between specific gravity and core length (only apples with apples available)

<table>
<thead>
<tr>
<th>Site</th>
<th>Ind. Tree</th>
<th>Fam Mean</th>
<th>Site</th>
<th>Ind. Tree</th>
<th>Fam Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-0.44</td>
<td>-0.67</td>
<td>G</td>
<td>-0.03</td>
<td>-0.23</td>
</tr>
<tr>
<td>CC</td>
<td>-0.41</td>
<td>-0.34</td>
<td>Ry</td>
<td>-0.44</td>
<td>-0.43</td>
</tr>
<tr>
<td>EC</td>
<td>-0.45</td>
<td>-0.45</td>
<td>Sc</td>
<td>-0.34</td>
<td>-0.51</td>
</tr>
<tr>
<td>WG</td>
<td>-0.48</td>
<td>-0.31</td>
<td>S-3</td>
<td>-0.34</td>
<td>-0.24</td>
</tr>
<tr>
<td>CB</td>
<td>-0.36</td>
<td>-0.13</td>
<td>SR</td>
<td>-0.26</td>
<td>-0.48</td>
</tr>
<tr>
<td>FM</td>
<td>-0.10</td>
<td>-0.36</td>
<td>SR-2</td>
<td>-0.24</td>
<td>-0.46</td>
</tr>
<tr>
<td>F</td>
<td>-0.10</td>
<td>-0.20</td>
<td>V</td>
<td>-0.18</td>
<td>-0.51</td>
</tr>
<tr>
<td>Pg</td>
<td>-0.28</td>
<td>-0.70</td>
<td>W</td>
<td>-0.50</td>
<td>-0.64</td>
</tr>
<tr>
<td>Pw</td>
<td>-0.40</td>
<td>-0.82</td>
<td>W2</td>
<td>-0.37</td>
<td>-0.09</td>
</tr>
<tr>
<td>Ph</td>
<td>-0.24</td>
<td>-0.56</td>
<td>BR</td>
<td>-0.21</td>
<td>-0.06</td>
</tr>
<tr>
<td>Bx</td>
<td>-0.44</td>
<td>-0.94</td>
<td>Mean</td>
<td>-0.36</td>
<td>-0.37</td>
</tr>
</tbody>
</table>
Family-Mean Correlations for Height and Diameter with Specific Gravity

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean across sites</th>
<th>Mean for site at which cores were taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (age-5)</td>
<td>-0.06</td>
<td>-0.11</td>
</tr>
<tr>
<td>Height (age-10)</td>
<td>-0.07</td>
<td>-0.11</td>
</tr>
<tr>
<td>Height (age-15)</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
<tr>
<td>DBH (age-15)</td>
<td>-0.15</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

Example Plots: Family Means for Height vs. Specific Gravity

B-12: Age-10 Height vs. Specific Gravity

B-13: Age-15 Height vs. Specific Gravity Deviation from Control

Sk: Age-10 Height Vs Wood Specific Gravity

Genetic Correlations

<table>
<thead>
<tr>
<th>Study</th>
<th>Height</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastien et al. 1985</td>
<td>-0.57</td>
<td>(0.15 to -1.0)</td>
</tr>
<tr>
<td>King et al. 1988</td>
<td>-0.53</td>
<td></td>
</tr>
<tr>
<td>Vargas-Hernandez and Adams 1991</td>
<td>-0.19</td>
<td>-0.63</td>
</tr>
<tr>
<td>OUR STUDY</td>
<td>-0.77</td>
<td>(core length)</td>
</tr>
<tr>
<td>St. Clair 1994</td>
<td>-1.02</td>
<td>-0.99</td>
</tr>
</tbody>
</table>
Overall Selection Differentials (all selections, all sites)

<table>
<thead>
<tr>
<th>Site</th>
<th>Specific Gravity</th>
<th>Height</th>
<th>DBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishop</td>
<td>0.397 g/cc</td>
<td>484 cm</td>
<td>139 mm</td>
</tr>
<tr>
<td>Black Rock</td>
<td>0.393 g/cc</td>
<td>517 cm</td>
<td>144 mm</td>
</tr>
<tr>
<td>Cedar Cr</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Cole Mt</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Elk Creek</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Fanno Mt</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Feather</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Gershman</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Peedee</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Pheasant</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Pomeroy</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Religion</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Rye Mountain</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>S-3</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Scaponia</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Steep Rock</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Vesper</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Walta (2)</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Walta</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>West Gil</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
</tbody>
</table>

Overall Selection Differentials (all 658 selections, single set/site means)

<table>
<thead>
<tr>
<th>Site</th>
<th>Specific Gravity</th>
<th>Height</th>
<th>DBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishop</td>
<td>0.397 g/cc</td>
<td>558 cm</td>
<td>153 mm</td>
</tr>
<tr>
<td>Black Rock</td>
<td>0.393 g/cc</td>
<td>591 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Cedar Cr</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Cole Mt</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Elk Creek</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Fanno Mt</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Feather</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Gershman</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Peedee</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Pheasant</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Pomeroy</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Religion</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Rye Mountain</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>S-3</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Scaponia</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Steep Rock</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Vesper</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Walta (2)</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>Walta</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>West Gil</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.393 g/cc</td>
<td>12.8 cm</td>
<td>3.0 %</td>
</tr>
</tbody>
</table>

Overall Selection Differentials (top 10% for height growth, single set / site means)

<table>
<thead>
<tr>
<th>Site</th>
<th>Specific Gravity</th>
<th>Height</th>
<th>DBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bishop</td>
<td>0.397 g/cc</td>
<td>561 cm</td>
<td>154 mm</td>
</tr>
<tr>
<td>Black Rock</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Cedar Cr</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Cole Mt</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Elk Creek</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Fanno Mt</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Feather</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Gershman</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Peedee</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Pheasant</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Pomeroy</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Religion</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Rye Mountain</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>S-3</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Scaponia</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Steep Rock</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Vesper</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Walta (2)</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>Walta</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>West Gil</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
<tr>
<td>MEAN</td>
<td>0.395 g/cc</td>
<td>605 cm</td>
<td>158 mm</td>
</tr>
</tbody>
</table>

Growth was increased about 10 times as much as the decrease in wood specific gravity

191 families selected

Reported estimates of specific gravity loss when selecting best 10% on growth

- - 4.1 % (Bastien et al. 1985)
- - 1.1 % (Vargas-Hernandez and Adams 1991)
- - 0.6 % Our study

Reasons for such little loss

- All family means are estimated with error (fewer trees and sites, greater error)
 - $h^2_{\text{family mean}}$ for specific gravity 0.56 with 6 trees
 - $h^2_{\text{family mean}}$ for growth usually > 0.6
- Selection for growth is good but not perfect (some error), resulting in imperfect correlated responses
- Rethink our specific gravity sampling???
Estimated family mean heritabilities
(correlation of what you see with what you’ll get)

<table>
<thead>
<tr>
<th></th>
<th>Growth</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 site, 6 trees/site</td>
<td>0.19</td>
<td>0.53</td>
</tr>
<tr>
<td>(specific gravity sample)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 sites, 8 trees/site</td>
<td>0.38</td>
<td>0.71</td>
</tr>
<tr>
<td>3 sites, 8 trees/site</td>
<td>0.47</td>
<td>0.82</td>
</tr>
<tr>
<td>6 sites, 12 trees/site</td>
<td>0.72</td>
<td>0.91</td>
</tr>
<tr>
<td>(growth sample)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reasons for such little loss

- All family means are estimated with error
- We select for growth based on all sites, measure specific gravity only on one (cannot estimate or account for G x E)

Average genetic correlation among sites

- $r_{\text{growth}} = 0.7$
 - Examined over many locations
- $r_{\text{specific gravity}} = 0.71, 0.86, 1.00$
 - Examined in only 3 pairs of sites
 - Much lower correlations observed when families come from a wide range of locations and tested over a broad range of sites (see Cown and McKimmy papers)

Reasons for such little loss

- All family means are estimated with error
- We select for growth based on many sites, measure specific gravity only on one (cannot estimate or account for G x E)
- There appears to be less genetic variation in wood specific gravity than for growth rate

Coefficient of family variation

(standard deviation of family means)

$$CV = \frac{\text{standard deviation of family means}}{\text{Overall Mean}} \times 100$$

Core volume: CV = 20.1%
Core specific gravity: CV = 7.8%

Reasons for such little loss

- All family means are estimated with error
- We select for growth based on many sites, measure specific gravity only on one (cannot estimate or account for G x E)
- There appears to be less genetic variation in wood specific gravity than for growth rate
- Non-random sample of 30 control trees?
"Warning…. Gains at rotation will be different from those in the tables"

- Gain = 2 h^2_{m} (Selection differential)…..
 - Tables present selection differentials, not gain
- Correlation of age-10 height / dbh and rotation-age volume is less than 1.0
- Correlation of age-15 specific gravity and SG of later rings is less than 1.0
- Correlation of core specific gravity with stem specific gravity is less than 1.0
 - Estimated at 0.727 in the Western Wood Density Survey (1965)
- Correlation of SG on 1 site with target deployment sites is less than 1.0

Conclusions

- Wood specific gravity is highly heritable.
- Probably need to sample more trees per family than we do at present.
- There is a negative genetic correlation between core length and wood specific gravity.
- The losses in specific gravity are less than expected, and about 1/10 the gain in height growth.
- Need to continue assessing the SPG of selections, and use as a culling factor in breeding and orchards
- Within BUs, no consistent relationship found with parent tree origin (elevation, latitude, longitude)

Acknowledgments

- NWTIC co-operators for data
- Dan Cress generated the three charts
Wood quality research at INRA: implications for Douglas-fir tree improvement

Philippe Rozenberg
Corvallis, 27 June 2002

Douglas-fir in France

• Douglas-fir plantation in France (2nd planted species after maritime pine)
• Growth and wood quality
• Solid wood products
• Near future: plywood, pulping (TMP)

Douglas-fir wood research at INRA

• History of Douglas-fir wood research at INRA (from 1960 to 1996)
• EUDIREC project (1996-2000)
• INRA Orléans today (2000+)

60’s: Microdensity at INRA Nancy

• Comparison of 2 Douglas-fir provenances using X-ray microdensity profiles (Polge)
• Study of cracks using X-ray pictures in Douglas-fir (Polge)
• Estimation of density components in Douglas-fir (Keller)

70’s and 80’s in Nancy

• Pruning and wood quality (Polge, Keller, Riou-Nivert)
• End-product quality: surface roughness (Nepveu), radial cracks (Polge), peeled veneer (Keller), rotary cutting (Mothe)
• Synthesis of Douglas-fir genetic variation of wood quality (Nepveu)
60’s: Microdensity at INRA Nancy

- Comparison of 2 Douglas-fir provenances using X-ray microdensity profiles (Polge)
- Study of cracks using X-ray pictures in Douglas-fir (Polge)
- Estimation of density components in Douglas-fir (Keller)

70’s and 80’s: the first genetic studies at INRA Orléans

- Age-age correlation of microdensity variables in 24 Douglas-fir provenances (Thoby)
- Genetic variation of stem form and branching in Douglas-fir (Jarret)
- Genetic variation of microdensity traits (Vonnet, J.C. Bastien)

Main Trends for the Genetics of Wood Density

- High heritability, low genetic variation
- Little genotype-by-environment interaction
- Unfavourable genetic correlations with flushing, height growth, within-ring heterogeneity, shrinkage... and, to some extent, radial growth

- EU funded research project
- Germany (NFV), Spain (INIA-CIFOR), Italy (CNR), France (INRA)
- Isoroy, Stora-Corbehem
- Solid wood products, plywood and thermo-mechanical pulp
- Direct and indirect Douglas-fir variation for end-products quality

Plywood Mechanical Properties

10 Douglas-fir trees

TMP Properties

Fiber coarseness

Specific Microdensity Variable

- r (clones) = 0.87***
- r (trees) = 0.66***
Stiffness and Density

- Up to 70% of stiffness variation
- Adding information about the genetic composition of the tree population: up to 90% (without information on MFA)
- Genetic variation of the stiffness-density relationship?

Objectives at INRA Orléans

- Avoid any Douglas-fir wood quality decrease
- Monitor the evolution of wood quality
- Genetic and environmental determinism of wood formation

Eudirec Conclusions

- Douglas-fir for plywood
- Douglas-fir for TMP
 - Pulp strength
 - Brightness
 - Extractive contents (effluents)
- Heterogeneity and stiffness
- Coarseness and stiffness

Main Wood Characteristics of Interest

- Today: microdensity, stiffness...
- Shrinkage
- Tomorrow: quantitative anatomy, heartwood formation
- Traits we’d really like to add: MFA and grain angle

Compression and Density

A very strong relationship

- R^2 (samples) = 0.77
- R^2 (clones) = 0.94

Microdensity
Wood anatomy profile

Rigidimeter

Koizumi's Bending machine (copy) 1995

Rigidimeter

First Prototype 1998

Rigidimeter

Second Prototype Orléans 1999

Rigidimeter

Second Prototype (squared tubes) Chili October 2000

Rigidimeter

Second Prototype (squared tubes) New-Zealand July 2001
Recent Results: Wood Heterogeneity
- Observation Scale
- Genetic Control
- Coefficient of Variation
- Relationship with Density

Recent Results: Consequences on Wood Density
- of increased radial growth
- of genetic variation of cambium reaction to climate

Genetic Variability
- Traits: populations and individuals

Relationship between 2 traits

Genetic variability of a given trait

Genetic variation of relationships between traits
Radial Growth and Density

Consequences

- Possible consequences of an increased ring width: from a density decrease to a density increase

Cambium Reaction to Climate

- Wood as a record of cambium reaction to climate
- Example: relationship between within-ring density variation and within-growing season minimum temperature

Minimum Temperature

In Earlywood Only

All Clones $r = 0.72^{***}$

Simila trends other softw (marit pine)
Large scale studies of genetic variation of end-product value

Relationships between basic wood properties and end-products value

Wood heterogeneity

Conclusion: Implications for Douglas-fir breeding

- There are still needs for methodological improvements
 - MFA, Grain Angle
 - standing trees
- Simultaneous studies of multiple traits
- Component traits:
 - within tree: from ring to ring
 - within ring, within early- and latewood (cell group)

Clone Effect

- Slopes at tree level;
- Significant clone effect

<table>
<thead>
<tr>
<th>Trait</th>
<th>H²</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.33</td>
<td>0.06</td>
</tr>
<tr>
<td>Overall Density</td>
<td>0.36</td>
<td>0.05</td>
</tr>
<tr>
<td>Radial Growth</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Consequences

Genetic Control of Cambium Reaction

Strong in earlywood

Weak in latewood

Within Ring Density (g/dm³)

Cumulated Minimum Daily Temperature (°Celsius)

Clone Effect

Consequences

- Large scale studies of genetic variation of end-product value
- Relationships between basic wood properties and end-products value
- Wood heterogeneity
Recommendations

• Douglas-fir breeding programs must take wood quality into account
• Wood quality may or may not be defined according to end-product quality
• Genetic variation of end-product value (requires a highly motivated private company)
• Wood heterogeneity as a consensus character (consensus in the literature; encouraging results in Douglas-fir, maritime pine, Norwegian spruce.

Special Acknowledgements

• Frédéric Millier
• Catherine Bastien, Milosh Ivkovich, Gunnar Schüte, Jean-Charles Bastien, Guillaume Chantre, Victoria Baonza, Nicola Macchioni
• Phil Cannon and Glenn Howe

Definition of microdensity index

Wood density (g/dm³)

Distance (× 24µ)

'Low density segment'

'High density segment'
Genetic Improvement of Conifer Lumber Stiffness and Strength

Keith Jayawickrama

PNWTRC / NWTIC workshop on Genetic Improvement of Wood Quality in coastal Douglas-fir and western hemlock

June 27, 2002
Oregon State University, Corvallis, OR

Take-Home Messages

Stiffness (MOE) and strength (MOR) are heritable
- We know very little about genetic control for DF and WH

Juvenile wood in conifers (including DF and WH) is weaker & less stiff; shortening rotations therefore reduces average stiffness & strength
- Whether the reduced stiffness and strength affects $$ return will depend on many factors
 - rotation length, product, grading procedure, log segregation procedure, where the trees are grown, market demand etc

Take-Home Messages (contd)

Would be very helpful if tree improvers (breeders) get good feedback from industry if & when they find lumber stiffness & strength to be deficient

Improving wood density should help maintain stiffness and strength, butØ

Reported relationships between density & stiffness / density & strength may exaggerate the true relationships at the family level
- We don’t know what the relationships are at the family level

Take-Home Messages (contd)

Would be very helpful if tree improvers (breeders) get good feedback from industry if & when they find lumber stiffness & strength to be deficient

Improving wood density should help maintain stiffness and strength, butØ

Reported relationships between density & stiffness / density & strength may exaggerate the true relationships at the family level
- We don’t know what the relationships are at the family level

Take-Home Messages (contd)

Smaller, fewer knots lead to higher stiffness and strength
- Can select / breed for fewer ramicorns and forks
- Ramicorns and forks less of a problem on slow-growth sites
- Knot size best managed by spacing

Fibril angle may be as important in controlling stiffness / strength in juvenile wood as density,
- Harder (more expensive) to measure
- Very little knowledge on its variation for DF and WH in PNW region (genetic, geographic)

Take-Home Messages (contd)

New tools are being developed to measure stiffness on logs and standing trees

Stiffness / strength are being researched actively in France (D-fir), Japan (sugi), New Zealand (radiata pine) and Queensland (slash x Caribbean hybrid)
- In at least two of above, research is being translated to practice
- Very little recent published work in the PNW in the USA.
- Lots of research done in the southeastern USA over a long period, only a few of the findings have been used

Background
Bending stiffness and strength are two important mechanical properties:
- Resistance to force perpendicular to the long axis of a beam

Bending stiffness - how easily does the beam bend?
- Fibre Stress at Proportional Limit expressed in Mega Pascals = MPa (10^6), or 10^6 psi
- Modulus of Elasticity MoE (Young’s Modulus) expressed in Giga Pascals = GPa (10^9)

Bending strength - at what point does the beam break?
- Modulus of Rupture MoR (expressed in MPa)

Douglas-fir is billed as a high-wood-quality species:
- "When architects and engineers look for the best in structural lumber, their first choice repeatedly is Douglas-fir… dimensionally stable and universally recognized for its superior strength-to-weight ratio, … high specific gravity provides excellent nail and plate-holding ability, … a documented superior performance from natural phenomena such as winds, storms… truly the ideal structural and general purpose wood for framing lumber…… "

(From WWF4 i Douglas-fir and western larch species facts, 1996)

Several factors discourage long rotations:
- Interest rates: E.g. At 8%, $100 cost carried for:
 - 25 years, grows to $685, 50 years, grows to $4,690
- Carrying lots of mature timber makes a corporation more attractive for a hostile takeover
- No price premium for large logs (opposite may apply)
- To keep trees growing, may need frequent thinnings cost associated with multiple entries
- Mature timber can become a political battleground (spotted owls, anti-logging activism)
- Conifers produce lower-quality juvenile wood during their first 10-20 years

DF lumber does command a price premium, but it may not match big cost differentials compared to some fast-growing pines

Good News.
- Douglas-fir juvenile wood is better than pine juvenile wood in some respects
 - Denser, stronger, stiffer
- Modern mills in Oregon and Washington can run very efficiently on small logs
Species
Provenance / seed source (probably)
Family within provenance
Geographic area where trees were grown?
Silviculture (spacing, thinning, pruning etc)
Size and frequency of knots
Distance from pith (linked to % juvenile wood)
Distance from base of tree (again linked to % juvenile wood)
Intrinsic clearwood properties (density, fibril angle, % latewood)

Species:
- Reasonable understanding of species differences
- Made complicated by lumber grading rules which lump species together

Provenance / seed source:
- Almost zero knowledge on between-source differences for DF and WH
- New 2nd-generation progeny tests the place to look

Family within provenance:
- Little knowledge on genetic control of MOE or MOR
- Some knowledge on genetic control of specific gravity

Geographic area where trees were grown?
- Very little knowledge on geographic variation in stiffness & strength for D-f and WH in PNW

Silviculture (spacing, thinning, pruning etc)
- David Briggs presentation in this workshop

Size and frequency of knots
- Size affected by spacing, frequency of ramicorns & forks
- Genetics of ramicorns & forks, ability to select against, discussed by Glenn Howe in this workshop
- Ramicorns and forks routinely assessed in progeny tests

Number of rings from pith (linked to % juvenile wood)
- A very important variable
- "Specific gravity, fiber length and fibril angle less desirable near pith for most purposes" – Megraw 1985

Distance from base of tree (again linked to % juvenile wood)

DF: Bending stiffness (MOE) decreases with increasing juvenile wood %

Source: Barrett, J.D. and Kellogg, R.M. Forest Products Journal 41:35-43

WH: Bending stiffness (MOE) decreases with increasing juvenile wood %

Source: FORINTEK Special Publication SP-41 September 2001
DF: Bending strength (MOR) decreases with increasing juvenile wood %

Source: Barrett, J.D. and Kellogg, R.M. Forest Products Journal 41:35-43

WH: Bending strength (MOR) decreases with increasing juvenile wood %

Source: FORINTEK Special Publication SP-41 September 2001

WH: MOE and MOR increase much faster with age from pith than density

Intrinsic clearwood properties - Fibril angle:
- Fibril angle decreases dramatically with age from pith in DF
- Fibril angle recently shown to have as much effect on stiffness and strength as density in radiata pine
- Expensive to measure
- We have practically zero information on variation in DF and WH in the PNW
 Geographic variation
 Genetic control

Intrinsic clearwood properties - Density:
- Generally considered to be an important trait
- Some research on inheritance
 Johnson & Gartner summary
 Several publications (PNWTIRC, BC etc)
- Thousands of progeny test trees assessed in co-op programs
 Johnson and Jayawickrama presentation on inferences

Density: stiffness & strength relationships have sometimes been overestimated, by "Stack-of-boards-in-lumberyard" syndrome, confounding:
- Relationship of stiffness / strength with Density
 Number of rings from pith
 Height from ground
 Site of lumber origin
As mentioned, other properties change dramatically pith to bark (e.g. fibril angle) and could affect stiffness.

For example, Keoki Carter (OSU M.S. thesis, 1993) estimated that specific gravity (removing effect of distance from pith etc) only explained the following proportion of variation in juvenile wood:

- 28% of variation in MOR (strength)
- 25% of variation in MOE (stiffness)

Examples of techniques to assess stiffness and strength

Taking wood cores – Power Drill

Stiffness testing (MoE) of boards
Non-destructive Sampling: Taking Clearwood Sticks (tool developed by Forest Research, New Zealand)

Non-destructive measure of stem stiffness: Rigidimeter tool, under development by INRA (France)

Log segregation based on wood stiffness: "Hitman" tool, developed by Industrial Research and Carter Holt Harvy (New Zealand)

What have we done in co-operative programs to genetically improve stiffness and strength?

All our efforts (in operational programs) to date have been directed toward:
- Assessing forking, ramicorns and specific gravity in progeny tests
- Culling some proportion of parents from orchards and from use in 2nd generation programs based on these three (two) traits
• The objectives:
 – Improving age-15 breast-height core density to improve age-40 (or age-50) whole tree lumber stiffness (and therefore value).
 – Improving juvenile wood stiffness & strength might be enough, since mature wood stiffness & strength are OK
 – Reducing forks and ramicorns to improve the log class
 Stiffness and strength not usually the main objective

So Where To From Here Re.
Stiffness and Strength?

1. First, establish if & when lumber stiffness & strength are limiting factors for DF and WH
 – Stiffness and strength are problems in other species, does it apply for our species in our conditions too?
 – Breeders need feedback from industry, mills

2. If there is enough reason to make lumber stiffness and strength a priority, need to develop a strategy to improve these traits:
 A. Estimate level of genetic control (between, within provenances) and relationship with other traits
 B. Set a Breeding Goal
 C. Choose most appropriate selection traits, strategies & techniques
 D. Screen populations (trials), identify best genotypes
 E. Process and interpret information, predict gains
 F. Use in deployment / breeding decisions

Snapshots of efforts for some important conifer species

Southeastern USA (southern pines):
 – Massive investment in wood quality research (including genetic studies)
 – Applications in genetic improvement programs:
 Improve stem straightness (selecting for straight trees)
 Reduce branch size (selecting for smaller, flatter branches)
 Screen plus trees & forward selections for wood density
 Wood Quality Elite Breeding Population (Texas co-op)
France (DF and other species):
- Very active basic research program currently underway (Rozenberg presentation in this workshop)

New Zealand (radiata pine):
- Breeding values for density, branch cluster frequency
- Ranking families for stiffness
- Indirect testing, log segregation tools

Queensland (slash x Caribbean pine hybrid)
- Research and selection aimed at producing high-quality sawlogs on a 20-year rotation
- Emphasis on improving stiffness and strength via selection of clones

Japan:
- Work on selecting sugi (Cryptomeria japonica) clones for high wood stiffness and strength
What are stem quality traits?

- Branch size
- Branch number
- Branch angle

Stem defects
- Excessive taper
- Sinuosity
- Crookedness/Straightness
- Ramiform branching and forking

Genetics of Stem Quality in Coastal Douglas-fir

Glenn Howe
Pacific Northwest Tree Improvement Research Cooperative

Keith Jayawickrama
Northwest Tree Improvement Cooperative

Branch traits

Biology
- Low to moderate genetic control (PNWTIRC, King et al. 1992, St. Clair 1994)
- There may be a genetic tradeoff between branch number and branch size
 Few large branches
 Many small branches
- Genetic relationships between branch traits and growth are unclear
 (King et al. 1992, St. Clair 1994)
 Absolute or relative branch diameters have been analyzed
 Results differ according to the age of the trees

- Branches flatten with age and the amount of genetic variation decreases
- Relationship between branch size and stem diameter changes with age and DBH

Measurement
- Quantitative measures are known to work well, but are costly
- Visual scores are much cheaper – how good are they?
- Uniform (sophisticated) analytical techniques should be used

Impact
- Large, steep branches = visual degrade, loss of strength (MOE), etc.
- Potential genetic gains in relative branch size are limited:
 Selection of top 10% of parents to put into a seed orchard
 Gain Change in branch size Citation
 9.2% 1.94 to 1.76 cm King et al (1992)
 8.3% 1.90 to 1.74 cm St. Clair (1994)

Branch size

Will this have an economic impact?

<table>
<thead>
<tr>
<th>Branching index (no. class x dia. class)</th>
<th>Value ($/m³)</th>
<th>Number of trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$34.51</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>$26.49</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>$26.22</td>
<td>12</td>
</tr>
</tbody>
</table>

| Branch no. = 6 - 9 | $25.61 | 20 |
| Branch size = 2.5 – 3.5 | $25.83 | 4 |

- If 1 cm (33%) reduction in size = $0.61/m³
- Then 8.7% reduction in size might = $0.16/m³
- Volume gains may produce 25X more value?
Branch traits

Recommendations
- Determine the relative efficiency of low-cost, visual scoring techniques
- Measure branch traits if low-cost measuring techniques are useful
- Do not use branch traits as selection criteria at the present time – probably best managed through control of stand density
- Study the genetics of “final” branch size using older trees
- Study the genetics of self-pruning

Sinuosity

Biology
- "Sinuosity is any stem crookedness or displacement from the vertical that is confined within an interwhorl stem segment" (Campbell 1965)
- Cause is unknown: Nutrition, excessive growth, other?
- Low to moderate genetic control $h_i^2 = 0.13$ and $h_f^2 = 0.41$ (Temel and Adams 2000)
- Weak genetic correlation with growth $r_g = 0.01$ (Temel and Adams 2000)

Measurement
- First, second and third interwhorls at the top of the tree (Campbell 1965; Adams and Howe 1985; Spicer et al. 2000)
- NWTIC measures as % deflection and “ignores the often wildly sinuous terminal”
- Measurements much below the 3rd interwhorl should be called something else: Crookedness? Straightness?

Impact
- Affects a narrow core of wood near the center of the tree
- Increases compression wood
- Causes slope of grain defect
- Only a concern for highly sinuous trees

Recommendations
- Measure before crown closure according to Adams and Howe (1985)
- Select against the most highly sinuous genotypes using independent culling

Crookedness/Straightness

Biology
- Crookedness much below the 3rd interwhorl
- A crook is a "departure of the main stem…(that) originates in a branch whorl, rather than on the interwhorl" (Temel and Adams 2000)
- Sinuosity scores "lack consistency between ages 12 and 24" (Temel and Adams 2000)
- Associated with ramicorns?

Impact
- Yield loss and association with large knots?

Recommendations
- Measure separately from "sinuosity"
Ramicorn branching & forking

Biology
- Most frequent cause is aberrant second flushing
 Adams and Bastien 1994
- More frequent at early ages – Early selection should work well
- Low to moderate genetic control
- Large genetic gains are possible
- Correlated with growth rate
- More frequent on productive sites

Second flushing may lead to:
- No defect
- Ramicorn branch
- Forking defect

Stem defects are genetically controlled

<table>
<thead>
<tr>
<th>Trait</th>
<th>Age</th>
<th>Individual h²</th>
<th>Family h²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth traits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>5</td>
<td>0.25</td>
<td>0.86</td>
</tr>
<tr>
<td>Height</td>
<td>11</td>
<td>0.27</td>
<td>0.87</td>
</tr>
<tr>
<td>Height growth</td>
<td>5-11</td>
<td>0.23</td>
<td>0.84</td>
</tr>
<tr>
<td>Diameter</td>
<td>11</td>
<td>0.23</td>
<td>0.84</td>
</tr>
<tr>
<td>Volume</td>
<td>11</td>
<td>0.25</td>
<td>0.84</td>
</tr>
<tr>
<td>Stem form traits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramicorns</td>
<td>11</td>
<td>0.20</td>
<td>0.81</td>
</tr>
<tr>
<td>Crookedness</td>
<td>11</td>
<td>0.16</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Stem defects are correlated with growth

Correlations between growth and stem form traits in a NWTC first-generation progeny test in the Nehalem breeding zone.

<table>
<thead>
<tr>
<th>Genetic correlation</th>
<th>Site correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth trait</td>
<td>Age</td>
</tr>
<tr>
<td>Height</td>
<td>5</td>
</tr>
<tr>
<td>Height</td>
<td>11</td>
</tr>
<tr>
<td>Height growth</td>
<td>5-11</td>
</tr>
<tr>
<td>Diameter</td>
<td>11</td>
</tr>
<tr>
<td>Volume</td>
<td>11</td>
</tr>
</tbody>
</table>

Ramicorns and forks are correlated with plantation growth

\[R^2 = 0.97 \]

Crookedness is correlated with plantation growth

\[R^2 = 0.62 \]
Ramicorns and forks have much lower correlations with growth at the family level

![Graph showing correlation between family mean volume and number of ramicorns and forks per tree.]

Crookedness is much less correlated with growth at the family level

![Graph showing correlation between family mean volume and crookedness score.]

Ramicorn branching and forking has been scored in many NWTIC co-ops

![Graphs showing correlation between height index and ramicorn branching Z-score, and stem forking Z-score.]

Selection for increased growth will increase ramicorns and forks

<table>
<thead>
<tr>
<th>Trait selected</th>
<th>Response (%)</th>
<th>Mean</th>
<th>Absolute change when:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (age 13)</td>
<td>+12</td>
<td>0.13</td>
<td>+0.02</td>
</tr>
<tr>
<td>DBH (age 9)</td>
<td>+28</td>
<td>0.04</td>
<td>+0.04</td>
</tr>
<tr>
<td>DBH (age 12)</td>
<td>+9</td>
<td>0.01</td>
<td>+0.01</td>
</tr>
<tr>
<td>Volume (age 11)</td>
<td>+38</td>
<td>0.05</td>
<td>+0.05</td>
</tr>
</tbody>
</table>

Potential for reducing ramicorns and forks is large by selecting only for increased growth

Ramicorns and forks could be an important exception

Stem quality

Conclusions

- For most stem traits, there seems to be little opportunity to increase tree value via genetic improvement
- Ramicorns and forks could be an important exception
- Second flushing is an important underlying problem
- Second flushing also associated with increased susceptibility to fall cold and summer drought
- Stem crookedness may be a secondary concern?
Stem quality

Key recommendations

- Track ramicorns and forks in progeny tests and operational plantations
- Determine the economic value of reducing ramicorns and forks
- Use ramicorn branching as a selection criterion
- Cult genotypes with very high propensity for sinuosity
- Measure other stem quality traits using proven, low-cost visual scoring techniques
- Presently, there seems to be little reason to use other stem quality traits as selection criteria

Acknowledgements

- NWTIC co-operators for permission to analyze and report Nehalem data
- Randy Johnson and Bryan Nelson for helpful discussions
- Dan Cress for scatterplots from two breeding units
Improving Wood and Stand Quality of New Zealand's Douglas-fir Plantations

Leith Knowles
Forest Research, Rotorua, NZ

History and management of D-fir in NZ

- Oldest plantings: 1865
- 1910-1985: 70,000 ha planted with Washington seed sources
- 1996-2002: 24,000 ha planted with 'fog belt' Oregon/Californian seed, in the South Island
- Thinned to waste to 500-800 stems/ha MTH 14-16m; Production thinned to 250-400 stems/ha age 26-34 years.
- Pruning: limited areas only
- Main product: structural lumber
- Market: NZ, Australia, and Japan.

Contributors

- Forest Research
 - Tony Shelbourne, Mark Kimberley, John Lee, Charlie Low, John Roper, Doug Gaunt, Russell McKinley, Brad Barr, Mark Dean, Mina Van der Colff, Luis Gea
- Geoff Downes, CSIRO, Hobart, Tasmania
- Graeme Young, Fletcher Challenge Forests
- Ian Whiteside (retired)
- Lars Wichmann Hansen, Royal Veterinary and Agricultural University, Denmark

Growth and yield

- Mean site index (MTH @ 40 yrs) 32 m
- Clearfell yields at age 45-60 yrs vary between 500m³/ha and 1500 m³/ha. Some sites produce up to 2000m³/ha.
- Seed from the Californian/Oregon coastal fog belt produces significantly more growth than Washington, or inland seed.
Goal of tree improvement in NZ Douglas-fir

- Increase merchantable yield by at least 50% over traditional Washington seed sources
- Increase quality (as represented by MoE of clearwood) from 9.2 GPa to 10.5 GPa
 - Increase BH outerwood basic density from 418 kg/m³ at age 30yrs to 450 kg/m³
 - Reduce BH MFA from 12∫ to 10.5∫

Growth of best 7 provenances in NZ (versus Washington provenance)

<table>
<thead>
<tr>
<th>Seed Source in US</th>
<th>MAI age 39 yrs (m³/ha)</th>
<th>% advantage over control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jackson S. F., CA</td>
<td>23.4</td>
<td>34</td>
</tr>
<tr>
<td>Santa Cruz, CA</td>
<td>22.9</td>
<td>31</td>
</tr>
<tr>
<td>Stewart Point, CA</td>
<td>22.0</td>
<td>26</td>
</tr>
<tr>
<td>Florence, OR</td>
<td>21.9</td>
<td>25</td>
</tr>
<tr>
<td>Berteleda, CA</td>
<td>21.8</td>
<td>25</td>
</tr>
<tr>
<td>Mad River, CA</td>
<td>21.3</td>
<td>22</td>
</tr>
<tr>
<td>Mt Talmalpeus, CA</td>
<td>20.7</td>
<td>18</td>
</tr>
<tr>
<td>Control (ex WA)</td>
<td>17.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Wood density of best 7 provenances in NZ (versus Washington provenance)

<table>
<thead>
<tr>
<th>Seed Source in US</th>
<th>Pith to bark density at 34 yrs (kg/m³)</th>
<th>Difference to control</th>
<th>Significance</th>
<th>Range at the tree level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stand mean</td>
<td>%</td>
<td>NS</td>
<td>Min</td>
</tr>
<tr>
<td>Jackson S. F., CA</td>
<td>413</td>
<td>-2</td>
<td>NS</td>
<td>341</td>
</tr>
<tr>
<td>Santa Cruz, CA</td>
<td>421</td>
<td>6</td>
<td>*</td>
<td>373</td>
</tr>
<tr>
<td>Stewart Point, CA</td>
<td>411</td>
<td>-2</td>
<td>NS</td>
<td>343</td>
</tr>
<tr>
<td>Florence, OR</td>
<td>426</td>
<td>-1</td>
<td>NS</td>
<td>325</td>
</tr>
<tr>
<td>Berteleda, CA</td>
<td>420</td>
<td>-1</td>
<td>*</td>
<td>349</td>
</tr>
<tr>
<td>Mad River, CA</td>
<td>426</td>
<td>-1</td>
<td>NS</td>
<td>319</td>
</tr>
<tr>
<td>Mt Talmalpeus S.P.</td>
<td>434</td>
<td>3</td>
<td>**</td>
<td>380</td>
</tr>
<tr>
<td>Control (ex WA)</td>
<td>422</td>
<td>-</td>
<td>NS</td>
<td>366</td>
</tr>
</tbody>
</table>

Conclusions re breeding for wood density

- Variation in density between provenances is small (max of +16 kg/m³)
- Variation between trees within a provenance is very large (mean of +60 kg/m³)

Effect of Stand Age (17-96 years) on BH Outerwood Density

Predicted MoE in NZ D-fir

- 1973 study linked branch and stem morphology, and wood properties, to MoE
 - 32 trees, 132 logs (aged 45 yrs) chosen for extremes
 - Density and branch size explained 63-72% of variation in MoE of butt and second logs
- 1977 study measured branch size and density in 100 trees (aged 51 yrs)
 - A subset of 23 second logs were selected to cover the range, and sawn
 - Density and branch size explained 80% of variation in MoE
Effect of Density and Branch Size on MoE

- 1973 4cm branches
- 1977 4cm branches

MoE (GPa) vs Density (kg/m3)

Prediction of timber stiffness (MoE) in NZ D-fir

- 1994 study sampled 100 trees for density, branch size and DBH in 4 stands, two aged 33 years, and 2 aged 59 years.
- 60 trees contributed 195 logs, which were sawn to timber of 42mm thickness and various widths.
- The timber was graded to NZ MSG, Australian and WWPA grades.
 - Regressions linked density, branch size and log height class to NZ MSG.
 - Compared to the earlier studies, the predicted timber grades were significantly better.
 - The relationships with log variables were weaker.

Export grade Douglas-fir logs

- 300mm min. SED
- 12m length
- Small branches
- Straight

Plan of Current (2002) Study

- 50 trees, aged 42 years, screened for BH density and MFA, by SilviScan.
- Subset of 18 trees selected for range of MFA, density, and DBH, using response surface central composite design.
- 18 trees (54 x 16ft sawlogs), sawn to 2x4 timber, MS graded.
- MoE from small clears (at 5.3m height intervals) related to SilviScan density, MFA, and predicted MoE from pith to bark strips.
- Relate whole-tree wood property and MSG results to BH core, sonic MoE, and branch size assessments.
- SilviScan assessments done by CSIRO, Melbourne.

Response surface central composite design

Small DBH, high density, low MFA, very high MoE (+20%).
Small DBH, high density, low MFA, very high MoE (+20%)

Large DBH, high density, high MFA, medium MoE (0%)

Large DBH, low density, high MFA, low MoE (-6%)

Large DBH, low density, high MFA, low MoE (-6%)

Large DBH, high density, low MFA, high MoE (+11%)

Sampling plan for SilviScan and small clear mechanical testing

Microfibril angle

Average angle of the cellulose molecules in the S2 layer of the cell wall relative to the axis of the cell.
A common relationship?

Observed dynamic MOE (GPa)

Mixed species
$R^2 = 0.85$

Alpine ash
$R^2 = 0.94$

Radiata pine
$R^2 = 0.86$

All (N=216)
$R^2 = 0.90$

MFA and Density of 50 trees: 2002 study of 42-year-old Douglas-fir

Predicted MoE (from density/MFA) in 42-year-old Douglas-fir

Predicted MoE (from density) in 42-year-old Douglas-fir

Predicted MoE (from MFA) in 42-year-old Douglas-fir

Relationship between DBH and MoE

Predicted MoE (GPa)

Breast height outerwood MFA

$y = -1.1004x + 27.847$

$R^2 = 0.52$

MoE (GPa)

Breast height outerwood basic density (kg/m3)

$y = 0.039x - 1.6082$

$R^2 = 0.62$

MoE (GPa)

Breast Height outerwood MFA

$y = -0.0447x + 17.161$

$R^2 = 0.0133$

MoE (GPa)

DBH (cm)

$y = -0.0447x + 17.161$

$R^2 = 0.0133$
Simplified Decision Support System for NZ Douglas-fir Growers

Conclusions- wood quality improvement in Douglas-fir

- Breeding and management objectives: yield and MoE
- Define relationships between MoE and tree size, branch size, density, and MFA. SilvScan is clearly a key tool
- Develop cheap screening method for MoE
- Select provenance for growth rate, and select and breed for MoE and yield
- CP seed + vegetative propagation for deployment of improved stock
- Develop and use simplified DSS to integrate all this knowledge

Preferred South Island site for new planting of Douglas-fir.
Low growing cost, high productivity, easy logging, few restrictions.
Western hemlock though not particularly prized for its wood properties is a large part of inventories on the West Coast of North America. It is a climax species that maintains its dominance through shade tolerance, acidic litter detrimental to other species, and fecundity. Due to its ability to seed in, many hemlock cut-blocks are regenerated naturally. As a result tree improvement is not so concerned with wood quality as focused on volume gain in order to provide an incentive for silviculturalists to plant. Due to shade tolerance many branches and stems are retained often leading to smaller diameter logs which translates to a larger portion of the stems being chipped. As well, low fibre coarseness and limited levels of chromophoric or toxic extractives result in wood that is not durable, or attractive to Western tastes; it is however suitable for Asian markets or pulp. Wood density is slightly lower than for Douglas-fir but much higher than in red cedar, and this combined with a better ability to absorb wood preservatives than either, contributes to hemlock being the preferred species for pressure treated wood products. To summarise its wood qualities, coastal western hemlock is desirable for pulp, treated wood and where uniformity is valued.

Studies of the genetics of hemlock wood properties in BC have so far included pilodyne tests to rank families for relative density, immersion method to estimate specific gravity, x-ray densitometry, and image analysis to ascertain micro-fibril angle of the S2 layer (MFA). Most recently x-ray diffractometry / optical scanning (Silviscan) to determine MFA, plus estimate density in order to derive wood stiffness has been done for some families. For pulp properties, fibre length (FL) and coarseness were measured through optical fibre analysis. Later cell morphology was studied by confocal microscopy and by image analysis allowing ratios of cell wall thickness to cell size to be determined. Significance of the measurements for solid wood was checked by mechanical testing of small clear pieces and for pulp by testing hand sheets from selected families sampled from progeny tests. A summary of the investigations carried out and the number of families checked follows (Table 1: Hemlock families analyzed by various methods).

As expected, family heritabilities for wood properties were almost twice as high as for growth traits for the corresponding samples. However, variability in the wood traits was limited and in general less than half that for growth. As with many other wood density studies there were strong (-0.4 to -0.5) negative phenotypic correlations with growth measures. MFA was positively correlated with growth and FL was close to neutral but depended on how FL was adjusted for breakage of fibres. Despite some difficulty in selecting for both wood and volume improvement, this was possible through use of correlation breakers. Because there are a considerable number of tested first generation hemlock parents it would not be difficult to construct seedlots
that show gains in both growth and wood traits and yet meet BC requirements for diversity (effective population size = 10).
Ongoing investigations in the genetics of wood properties of western hemlock at the BC Forest Service will include analysis of extractive content, realized gain trials for wood properties, and selection of parents superior in wood or pulp quality for sub-lines of the breeding population. It is hoped that through this activity and better silviculture, hemlock can maintain its position in the marketplace.

Recommendations:

1. Screening of hemlock parent trees for pulp traits.
2. Screening of hemlock parent trees for density and MFA.
3. Inclusion of parents selected for wood and fibre quality in breeding populations.

Table 1: Hemlock Families Analyzed by Various Methods

<table>
<thead>
<tr>
<th>Series</th>
<th>Site</th>
<th>Solid Wood</th>
<th>Pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM1</td>
<td>Mission</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>1979</td>
<td>Adam</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>MM2</td>
<td>Carman</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>Jrd Hi</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>MM3</td>
<td>Bonanza</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>1981</td>
<td>Quatse</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Naka</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>
Summary, Tree Improvement
Recommendations and
Research Needs

Keith Jayawickrama

 PNWTFRC / NWTIC workshop on Genetic Improvement of Wood
Quality in coastal Douglas-fir and western hemlock
June 27, 2002
Oregon State University, Corvallis, OR

Wood Quality Overview: Megraw

- Stiffness varies dramatically with height in tree and ring from pith
- Most (but not all) variation in stiffness is due to variation in fibril angle and specific gravity
- Wood properties differ going up the stem as well as pith to bark
 - Make comparisons only on a very specific ring and height basis
- While end-use properties such as stiffness can be valuable screening tools, tree improvement efforts should be founded on individual basic properties

Wood Quality and Silviculture: Briggs

- Be sure of what is being referred to by "wood quality"
- Thinning, fertilization, pruning, rotation age all affect quality
 - Fiber properties, specific gravity, compression wood
- Knot size is strongly affected by spacing
 - Wide spacing leads to low quality, not a good management alternative
- Thinning & fertilization affect the quality of top logs vs. middle logs vs. butt logs in different ways
 - Improves quality in butt log, makes quality worse in top log
- Need research on effect of silviculture on the juvenile wood phase

Improving Wood Quality: Cannon & Miller

- Their company is interested in faster growth, shorter rotations and stronger wood (all at the same time)

Overview on Specific Gravity: Johnson & Gartner

Most of the variation is within a tree
Within tree variation >> within stand > among stands
Within a stand at mild adverse association with tree dbh
No clear evidence that fast-growing stands produce lower specific gravity
Specific gravity increases with:
 - decreasing elevation, decreasing latitude
Improved specific gravity with:
 - Longer rotations
 - Genetic Improvement?

Genetics of Specific Gravity: Johnson & Jayawickrama

Brief summary of data from 3,900 trees from 658 families
(Protocol recommended to date n 6 trees/family on 1 site)
Narrow-sense heritability estimated at around 0.7
Data are not well suited for estimating genetic correlations with growth traits, but family-mean correlations appear weak
From selecting the best 10% per set for height, a selection differential of +6.0% for height, -0.6% for specific gravity (10 : 1 height : specific gravity)
Probably need to sample more trees / family than current protocol
DF Wood Quality Research at INRA: Rozenberg

- Over 750,000 acres DF plantations in France
- Extensive wood quality research on DF since 1960
 - Provenances, form & branching, density, microdensity, stiffness, pruning, peeling, thermomechanical pulping, plywood
- DF breeding programs must take wood quality into account
- A highly motivated industrial landowner could make use of genetic variation of end-product value

Improving lumber stiffness & strength: Jayawickrama

- Stiffness and strength likely to be heritable in DF & WH
- Need feedback if & when stiffness & strength are deficient
- We don’t have a good estimate of the density: stiffness relationship at the family level
- Conifer lumber stiffness & strength are being actively researched in several regions / countries, in some cases information is being used in operational tree improvement

Genetics of Stem Form: Howe & Jayawickrama

- Probably not worth trying to breed for small, flat branches
- In some datasets, sinuosity, ramicorns/forking are almost as strongly inherited as height / dbh / volume
- Ramicorns + forking has low-to-moderate, adverse genetic correlation with growth rate (research papers + Nehalem data)
 - Could use more NWTIC data (hundreds of thousands of observations) to confirm these trends
- Ramicorns + forking strongly correlated with growth rate at plantation level (i.e. more defect at fast-growing sites)
- Keep assessing ramicorns + forking, use in selection
 Could select low-ramicorn families to deploy in high-growth conditions (fertile soils, low elevation, weed control etc.)

Genetics of WH wood properties: Cartwright

- Points of difference between DF and WH
- Ten year’s work in BC on genetics of WH wood properties, including studies on
 - Between-provenance differences
 - Within-provenance (family) differences
- Genetic parameter estimates obtained for some traits
- Advocates screening top WH parents for pulp properties (fiber length and collapsability)

New Zealand Douglas-fir: Knowles et al.

- Log size, branch size, specific gravity and fibril angle all influence lumber grade
- Have established clear goals for improving yield and lumber stiffness through breeding and silviculture
- Have selected provenances for growth rate, are selecting and breeding within provenances for stiffness and growth rate
- Planning to use control-pollinated seed + vegetative propagation for deployment of improved stock

Some Research Questions to Answer for Douglas-fir and western hemlock
1. What are the log + wood quality traits we should emphasize in breeding & deployment?

2. How much weight should we put on wood quality vs. growth rate (e.g. is it worth losing x % gain in growth rate to get y % gain in stiffness)

3. Nature of genetic control:
 - Differences between provenances (seed sources)
 - Differences between families within provenances

4. How can we translate data from progeny test to operational plantation:
 - I.e. How much gain can be obtained by:
 - Measuring the selection trait (e.g. specific gravity) on part of a tree, at a given age, on a given site, and extrapolating to:
 - Target properties (e.g. stiffness)
 - Target sites + operational conditions
 - Whole trees
 - Rotation age

5. What is the most efficient, cost-effective way to predict stiffness and strength?
 - Review, test non-destructive tools and techniques

6. Is it possible to develop a breed of western hemlock with wood quality equal to Douglas-fir, what would it take, is it worth the effort?

7. What are the regional trends in wood properties (effects of latitude, elevation, precipitation)?
 - Need to know these for efficient deployment ñ if certain site conditions favor certain wood properties, may not need to emphasize them when selecting parents

How to Proceed Regarding Genetic Improvement of wood quality

Existing PNW research on wood quality has been fairly well implemented in the operational tree improvement programs

NWTIC role: Need to be sure stem form is being assessed correctly and uniformly across co-ops
 - Differentiate sinuosity and crook
 - Assess the same part of the tree from co-op to co-op
 - Use the same scoring system / scale from co-op to co-op
 - Update test measurement guidelines
 - Cant fix any existing inconsistencies in first-gen. data, but be prepared before 2nd gen tests are ready for measurement

If there is need for, and interest in, improving a particular wood property:
 A. Set a Breeding Goal
 B. Choose most appropriate selection traits, strategies & techniques
 C. Screen appropriate populations (trials), identify best genotypes
 D. Process and interpret information, predict gains
 E. Use in deployment / breeding decisions
Existing 1st – generation tests can be used right now to fill out any gaps in wood property information
• Rank 1st-generation seed orchard parents, now with emphasis on log + wood properties
• Predict breeding values.
• Choose orchard parents with desired level of gain for wood properties
• Translate information immediately to gain in plantations

Next option would be to assess 2nd – generation tests:
• Advantages:
 • Can assess between-provenance differences as well as within-provenance differences
 • Tests should be more uniform and successful than 1st gen tests
 • At some point in the future, can establish new orchards with more gain than 1st & generation orchards
• Disadvantages:
 • Trees are still too young to measure most wood properties

We donít need to improve every wood trait for every cooperator / co-operative / plantation. Examples:
 – Some evidence that density increases going southward, thus density may be OK in south OR / north CA
 – Ramicorns and forking may be less important on slow-growing sites
 – Forest growers processing their own wood likely to be more interested than those selling logs
 – Wood quality less of an issue if planning longer rotations

If we have the right data, could tailor orchard seedlots to co-operator need and site (mix and match)

Controlled crosses would provide a further level of control