Pacific Northwest Tree Improvement Research Cooperative Annual Report 2010-2011

Oregon State University College of Forestry Department of Forest Ecosystems and Society

L Z L Glenn Howe, Lauren Magalska, Ron Beloin, J. Bradley St.Clair, Scott Kolpak, Oguz Urhan

http://www.fsl.orst.edu/pnwtirc/

PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE

Oregon State University College of Forestry Department of Forest Ecosystems and Society

2010-2011

Annual Report

Report authors Glenn Howe Ron Beloin Scott Kolpak

Lauren Magalska J. Bradley St.Clair Oguz Urhan

For information Glenn.Howe@oregonstate.edu phone 541-737-9001, fax 541-737-1393

Pacific Northwest Tree Improvement Research Cooperative

Annual Report 2010-2011

The Pacific Northwest Tree Improvement Research Cooperative (PNWTIRC) was formed in 1983 to conduct research in support of operational tree improvement in the Pacific Northwest. Emphasis is on region-wide topics dealing with major coniferous species. Membership has included representatives from public agencies and private forestry companies in western Oregon, western Washington, and coastal British Columbia.

OUR MISSION IS TO:

- Create a knowledge base concerning genetic improvement and breeding of Pacific Northwest tree species.
- Develop reliable, simple, and cost-effective genetic improvement methods and apply these methods to solve tree-breeding problems.
- Promote effective collaboration and communication among public agencies and private industries engaged in tree improvement in the region.

All participants provide guidance and receive early access to research results. Regular and Associate members provide financial and in-kind support and are represented on the Policy/Technical Committee. This committee is responsible for making decisions on program strategy and support, identifying research problems, establishing priorities, and assisting in the planning, implementation and evaluation of studies. Because Contractual Participants provide less financial support, they have no voting rights on the Policy/Technical Committee. Liaison Members provide no financial support and have no voting rights. The PNWTIRC is housed in the Department of Forest Ecosystems and Society at Oregon State University.

PNWTIRC PARTICIPANTS

Regular Members

Cascade Timber Consulting Bureau of Land Management Forest Capital Partners Green Diamond Resource Company Longview Timber Company Olympic Resource Management Oregon Department of Forestry Oregon State University Plum Creek Timber Company Port Blakely Tree Farms Rayonier Roseburg Forest Products Stimson Lumber Company Washington State Department of Natural Resources

Associate Members

Starker Forests

Contractual Participants

Lone Rock Timber Company

Liaison Members

Inland Empire Tree Improvement Cooperative Northwest Tree Improvement Cooperative USDA Forest Service, Pacific Northwest Research Station

CONTENTS

About the PNWTIRCi
PNWTIRC participantsii
Annual meeting agenda1
Overview
Identifying site characteristics that explain variation in Douglas-fir productivity and stem form11
Early genetic selection for wood stiffness in juvenile Douglas-fir and western hemlock
Western Conifer Climate Change Consortium (WCCCC)
Seedlot Selection Tool: Step by step example
Center for Forest Provenance Data
Budget and other business
Douglas-fir SNP chip: Future of Douglas-fir genomics research and application74
PNWTIRC miniaturized seed orchard study

AGENDA – WEDNESDAY SEPTEMBER 14, 2011 – ANNUAL MEETING – PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE (PNWTIRC)

START TIME:	8:30 AM for coffee; 9:00 AM for presentations
LOCATION:	McMenamin's Edgefield, Troutdale, OR
LUNCH:	Lunch provided

Time	Торіс	Responsibility
8:30-9:00	Coffee	
9:00-9:10	Welcome and Introductions	Sara Lipow
9:10-9:30	 Overview PNWTIRC accomplishments for 2010-11 CAFS overview and 2011 proposals PNWTIRC plans for 2011-12 	Glenn Howe
9:30-10:10	Identifying site characteristics that explain variation in Douglas-fir productivity and stem form	Lauren Magalska
10:10-10:30	Break	
10:30-11:00	Early genetic selection for wood stiffness in Douglas-fir and western hemlock	Scott Kolpak Oguz Urhan
11:00-12:00	 Updates Regional Approaches to Climate Change Seed Transfer Tool Center for Forest Provenance Data CTGN survey 	Glenn Howe Ron Beloin Brad St.Clair Michael Coe
12:00-1:00	Lunch	
1:00-1:30	Budget and Other BusinessBudget presentation and voteElect new Policy/Technical Committee Chair	Glenn Howe
1:30-2:10	 Conifer Translational Genomics Network Douglas-fir SNP chip Future of Douglas-fir genomics research and application 	Glenn Howe
2:10-2:30	Break	
2:30-2:55	Miniaturized Seed Orchard Project	Scott Kolpak
2:55-3:00	Wrap-up and adjourn	Glenn Howe

Highlights of 2010-2011

Wood quality research

- Published manuscripts
 - Vikram, V., Cherry, M.L., Briggs, D., Cress, D.W., Evans R., and Howe, G.T. 2011. Stiffness of Douglas-fir lumber: Effects of wood properties and genetics. Canadian Journal of Forest Research 41:1160-1173.
 - Jayawickrama, K.J.S., Ye, T.Z., and Howe, G.T. 2011. Heritabilities, intertrait genetic correlations, GxE interaction and predicted genetic gains for acoustic velocity in mid-rotation coastal Douglas-fir. Silvae Genetica 60:8-18.
- Funded a CAFS proposal entitled "Early genetic selection for wood stiffness in Douglas-fir and western hemlock" and began the associated research

- Scott Kolpak and Oguz Urhan will discuss

PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><complex-block>

Highlights of 2010-2011

Publications by PNWTIRC personnel

- Chmura, D.J., Anderson, P.D., Howe, G.T., Harrington, C.A., Halofsky, J.E., Peterson, D.L., Shaw, D.C., and St.Clair, J.B. 2011. Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. Forest Ecology and Management 261:1121-1142.
- Chmura, D.J., Howe, G.T., Anderson, P.D., and St.Clair, J.B. 2010. Adaptation of trees, forests and forestry to climate change. Sylwan 154:587-602.
- Jayawickrama, K.J.S., Ye, T.Z., and Howe, G.T. 2011. Heritabilities, intertrait genetic correlations, GxE interaction and predicted genetic gains for acoustic velocity in mid-rotation coastal Douglas-fir. Silvae Genetica 60:8-18.
- Vikram, V., Cherry, M.L., Briggs, D., Cress, D.W., Evans R., and Howe, G.T. 2011. Stiffness of Douglas-fir lumber: Effects of wood properties and genetics. Canadian Journal of Forest Research 41:1160-1173.

Highlights of 2010-2011

Presentations by PNWTIRC personnel

- Howe, G.T., Kolpak, S.*, Urhan, O., Cress, D., Jayawickrama, K., and Ye, T. 2011. Early genetic selection for wood stiffness in Douglas-fir and western hemlock. Proposal poster presentation at the Annual Meeting of the Center for Advanced Forestry Systems, 14-16 June 2011, Seattle, WA.
 *Presenter
- Howe, G.T., Kolpak, S., Urhan, O*, Cress, D., Jayawickrama, K., and Ye, T. 2011. Early genetic selection for wood stiffness in Douglas-fir and western hemlock. Poster presentation at the Annual Meeting of the Western Forest Genetics Association Meeting, 25-28 July 2011, Troutdale, OR.
 *Presenter
- Magalska, L.E., Howe, G.T., Maguire, D. 2011. Douglas-fir Productivity and Near-Term Climate Change. National Workshop on Climate and Forests. Flagstaff, AZ., May 16-18 2011.

PNWTIRC plans for 2011-2012

SNP-based marker-assisted selection in Douglas-fir

- Write a proposal for a new PNWTIRC study to investigate the potential for SNP-based marker-assisted selection in Douglas-fir
- Test new SNP chip and begin genotyping second-cycle selections

Cold hardiness testing

Facilitate cold hardiness testing by the NWTIC

Climate change subproject (TAFCC)

- Continue to facilitate the activities of the Taskforce on Adapting Forests to Climate Change
- Submit a proposal to the AFRI Climate Change Program with PNWTIRC participation

PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE

Introduction What did I do? Why did I do it? Why is it unique? How does it fit into the bigger picture?

Issues Nature of relationships – Use analytical methods that describe both linear and non-linear relationships (LR and RF) Interactions – automatically included by RF Colinearity – RF is robust, Corr captures simple relationships Biological signal – separate real from artifacts using three-pronged approach, importance scores and rank correlations

	luce				C			_					
	Im	porta	Inc	e	3	CO	re	S					
$\langle \rangle$													
			SIN										
		Site	RF (13.	7)		LR (34	55)	_	Corr (10.20)		Total	
	SCG	characteristic	VI	Score	#	GDÌ	Score	#	r ² rol	Score	#	Score	#
1333	PRECIP	MAP		-	-	-	-	-	- rei	-	-	0.00	
		MSP			-	-	-		-			0.00	18
		PPT at	-	-	-	-	-	-	-	-	-	0.00	18
		PPT sm	-		-	-	-		-	-	-	0.00	18
83		PPT sp	-	-	-	-	-	-	-	-	-	0.00	18
83		PPT wt	-		-	0.006	0.211	10	-	-	-	0.21	15
	TEMPI	bFFP	0.098	1.343	5	0.124	4.274	4	-	-	-	5.62	4
		DD < 0°C	-	-	-	-	-		-			0.00	18
		DD < 18°C	-	-	-	0.050	1.744	8	-	-	-	1.74	9
		PAS	-	-	-	-	-	-	0.065	0.659	8	0.66	17
		TD	0.115	1.573	4	-	-	-	0.127	1.295	2	2.87	10
	TEMP2	DD > 5°C	-	-	-	-	-	-	-	-	-	0.00	18
		eFFP	-	-	-	-	-	-	-	-	-	0.00	18
		EMT	-	-	-	-	-	-	-	-	-	0.00	18
		FFP	-	-	-	-	-	-	-	-	-	0.00	18
		MAT	-			0.052	1.803	7	-			1.80	8
		MCMT	0.134	1.841	Т	0.147	5.072	2	0.076	0.777	6	7.69	2
		NFFD	0.093	1.273	7	0.064	2.218	6	-	-		3.49	6
-		Tave at	-	-	-	-	-	-	-	-	-	0.00	18

Soils

- AWC, TPD and clay did not cluster with any other site characteristics
- Douglas-fir productivity has been linked to soil moisture
- AWC expected to explain variation in site productivity
- TPD and clay influence AWC
- TPD and clay expected to have diminished importance if AWC explains variation in site productivity

Moderate to Low Consistency

Rank correlations between analytical methods

Response	Corr vs RF	Corr vs LR	RF vs LR
Across-program			
Biomass	-0.07 (0.66)	-0.27 (0.09)	-0.01 (0.96)
DBH	0.39 (0.01)	-0.06 (0.70)	0.47 (<0.01)
HT	0.05 (0.74)	-0.03 (0.87)	0.48 (<0.01)
Mortality	0.33 (0.03)	0.28 (0.07)	0.08 (0.62)
Within-program			
Biomass	0.11 (0.48)	-0.13 (0.43)	0.02 (0.91)
DBH	0.26 (0.10)	0.09 (0.57)	0.13 (0.42)
HT	0.33 (0.03)	0.15 (0.34)	0.32 (0.04)
		0.01 (0.93)	0.09 (0.57)

Response DBH vs HT	Across-program 0.24 (0.12)	Within-program 0.52 (<0.01)
DBH vs Biomass	0.24 (0.13)	0.25 (0.11)
DBH vs Mortality	0.02 (0.92)	-0.20 (0.20)
HT vs Biomass	0.35 (0.02)	0.41 (0.01)
HT vs Mortality	0.44 (<0.01)	-0.09 (0.59)
Biomass vs Mortality	0.16 (0.31)	-0.18 (0.26)

Stem Form

- No evidence to suggest that any of the SCGs or individual site characteristics explained variation in stem form
- Small amount of variation explained
- Lack of consistency
- Different set of site characteristic may be important (insect, disease, mechanical damage)

Conclusions

- Study identified general relationships
- Laid the groundwork for future studies on Douglas-fir productivity, stem form and related site characteristics

Acknowledgements

My Committee:

Glenn Howe Scott Holub Doug Maguire (a.k.a. Robin Rose) Jeff Stone

The NWTIC: Keith Jayawickrama

Denise Cooper Terrance Ye

Jim Smith Jeff DeBell Sara Lipow Randall Greggs Dan Cress Rich Kelly **Student Workers:** Annie Simmonds Elaine Blampied James Crawford

Funders: PNWTIRC

Center for Advanced Forestry Systems Henry and Mildred Fowells Graduate Fellowship, J.R. Dilworth Memorial Fund, Richard and Doris Waring Graduate Student Travel Award, OSU Student Chapter of the Society of American Foresters, Gordon Carlson Scholarship, Schutz Family Education Fund, and the Jackie Cain Memorial Scholarship

Early genetic selection for wood stiffness in juvenile Douglas-fir and western hemlock

Scott Kolpak¹, Oguz Urhan¹, Glenn Howe¹

¹Pacific Northwest Tree Improvement Research Cooperative Department of Forest Ecosystems and Society Oregon State University

Past research on wood quality traits of 'mature' Douglas-fir (25 years old)

- Stiffness is heritable and substantial gains are possible
- HM200 MOE has a high genetic correlation (r_a = 0.92) with bending MOE
- ST300 MOE has a moderate genetic correlation ($r_g = 0.57$) with bending MOE
- Acoustic velocity can be used instead of acoustic MOE to evaluate wood stiffness (no strong need to measure density)
- Selection for bending stiffness or acoustic velocity = no large adverse effects on growth

Wood stiffness publications:

Cherry et al. 2008. Genetic variation in direct and indirect measures of wood stiffness in coastal Douglas-fir. Can. J. For Res. 38(9): 2476-2486.

Jayawickrama et al. 2011. Heritabilities, intertrait genetic correlations, GxE interaction and predicted gains for acoustic velocity in mid-rotation coastal Douglas-fir. Silvae Genetica 60: 8-19.

Vikas et al. 2011. Stiffness of Douglas-fir lumber: effects of wood properties and genetics. Can. J. For Res 41: 1160-1173.

Wood stiffness in juvenile Douglas-fir and western hemlock

There is a strong interest in improving stiffness in younger trees (e.g. 6 - 12)

- Trees of these ages are being measured for inclusion into seed orchards and future breeding
- No wood quality traits have been incorporated beyond 1st cycle breeding populations

There are challenges to applying research tools and methods from older trees to younger trees, and to western hemlock

Wood stiffness in young trees: Challenges and unknowns

Phenotype

- Wood anatomy is different, mostly juvenile wood and sapwood
- Branches on small trees may adversely affect 'standard' measurement protocols
 - Secondary branches in hemlock
- Acoustic tools may not work well on small trees
- Differences between Douglas-fir and western hemlock

Genetics (young trees)

 Heritabilities, genetic gains, juvenile-mature wood correlations are unknown

Project goals Location **Project goals** Progress (1) Evaluate alternative methods for Field work done Operational measuring wood stiffness on young trees of plantations Analysis ongoing Douglas-fir (DF) and western hemlock (WH) (2) Estimate genetic parameters and Ongoing Progeny sites genetic gains for juvenile wood stiffness in DF and WH (3) Develop optimal measurement and selection scenarios for improving juvenile wood stiffness in DF and WH 4) Estimate age-age correlations for DF wood properties PACIFIC NORTHWEST TREE IMPROVEMENT **RESEARCH COOPERATIVE**

Phase 1 objectives

Tools - Evaluate standing-tree acoustic tools for measuring acoustic velocity (AV) in young trees

- Robustness
- Correlations with log-based tools (HM200)

Methods - Evaluate the same-face method of probe placement versus the opposite-face method

Whorls - Compare alternative standing-tree stress wave target areas

- Interwhorls = shorter flight-paths (<< 1 meter), more clear wood</p>
- Across whorls = longer flight-paths (~ 1 meter), spans branch whorls

Young tree phenotypic study

	Plantations (Starker Forest's)	Years planted (tree age)	DBH (cm)	No. of Douglas-fir	No. of Western hemlock
	Peeler Greene	2004-05 (7)	4.5	12	13
	Rhubarb 2	2002-03 (9)	6.9	13	12
	Ellmaker Parkview	2001-02 (10)	6.2	12	13
	Edward Spring	1998-99 (13)	13.4	12	9
	Elephant Foot	1996-1997 (15)	14.4	13	14
A DA LAND					A STANK OF AND A

Which tools are best?

Objective. Evaluate standing-tree tools for measuring AV. Effective tools have high correlations with other tools

Method. Compare tool correlations <u>within</u> (1) same-face method and (2) opposite-face method

Results

- Ultra Timer = some poor correlations
- MicroTimer, TreeSonic 1, and TreeSonic 2 = no clear differences

Conclusions

- No need to consider TreeSonic 2 (sliding hammer is awkward and physically demanding)
- Drop the UltraSonic Timer

Table 2. Correlations among acoustic tools and sensor placements for Douglas-fir and western hemlock pooled across five sites. Douglas-fir correlations are below the diagonal and western hemlock are above the diagonal.

			Opp	oosite f	ace sen	sors	Sa	ame fac	e senso	ors
		Acoustic tool	Micro Timer	Tree- Sonic 1	Tree- Sonic 2	Ultra Timer	Micro Timer	Tree- Sonic 1	Tree- Sonic 2	Ultra Timer
1	01	Micro Timer	-	0.76	0.44	0.36				
ent	osite	TreeSonic 1	0.34	-	0.52	0.25				
Eme	bdd	TreeSonic 2	0.42	0.39	-	0.10				
lace	0	Ultra Timer	0.04	-0.07	-0.04	-				
sor P		Micro Timer					_	0.65	0.46	0.53
Sen	me	TreeSonic 1					0.45	-	0.48	0.50
•/	Sa	TreeSonic 2					0.42	0.60	-	0.36
		Ultra Timer					0.46	0.51	0.39	-

Correlation coeficients (r) are among averages for interwhorls 1 and 2.

TreeSonic 1 = TreeSonic + SD02 sensor TreeSonic 2 = TreeSonic + sliding hammer sensor

Which probe placement is best?

Objective. Evaluate the same-face method of probe placement versus the opposite-face method

Method. Which tool correlations are higher (1) same-face method or (2) opposite-face method?

Results

- Same-face correlations are slightly higher than opposite-face
- But...only one flight path examined

Conclusions

 Test same-face and opposite-face methods in progeny tests Table 2. Correlations among acoustic tools and sensor placements for Douglas-fir and western hemlock pooled across five sites. Douglas-fir correlations are below the diagonal and western hemlock are above the diagonal.

			Opp	oosite f	ace sen	sors	Sa	ame fac	e senso	ors
		Acoustic tool	Micro Timer	Tree- Sonic 1	Tree- Sonic 2	Ultra Timer	Micro Timer	Tree- Sonic 1	Tree- Sonic 2	Ultra Timer
	01	Micro Timer	-	0.76	0.44	0.36				
ent	osite	TreeSonic 1	0.34	-	0.52	0.25				
eme	bdd	TreeSonic 2	0.42	0.39	-	0.10				
lac	0	Ultra Timer	0.04	-0.07	-0.04	-				
Pr P		Missa Timor						0.05	0.46	0.52
JSC		Micro Timer					-	0.65	0.46	0.55
Ser	Ĕ	TreeSonic 1					0.45	-	0.48	0.50
	Sa	TreeSonic 2					0.42	0.60	-	0.36
		Ultra Timer					0.46	0.51	0.39	-

Correlation coeficients (r) are among averages for interwhorls 1 and 2.

TreeSonic 1 = TreeSonic + SD02 sensor TreeSonic 2 = TreeSonic + sliding hammer sensor

Is measuring across whorls a problem?

Is measuring across whorls a problem?

Objective. Test the effect of whorls

If whorls affect AV, then correlations between two interwhorl measurements will be larger than correlations involving across-whorl measurements

Method. Do these two types of correlations differ?

- Interwhorl #1 versus interwhorl #2
- Across-whorl versus interwhorl

Conclusion. No adverse effect of measuring across whorls in either Douglas-fir or western hemlock

 Table 3. Repeatability of tools and methods between interwhorls and whorls.

 Correlations between acoustic velocities measured on (1) two successive interwhorls and (2) interwhorls versus the intervening whorl in Douglas-fir and western hemlock.

			Dougl	as-fir		Westerr	hemlock	
		Acoustic tool	Interwhorl 1 versus interwhorl 2	Whorl versus interwhorl	l s i	nterwhorl 1 versus nterwhorl 2	Whorl versus interwhorls	
acement	Opposite	Micro Timer TreeSonic 1 TreeSonic 2 Ultra Timer	0.26 0.14 0.17 -0.08	0.44 0.43 0.48 0.11		0.66 0.53 0.30 0.64	0.72 0.60 0.45 0.58	
Sensor Pl	Same	Micro Timer TreeSonic 1 TreeSonic 2 Ultra Timer	0.44 0.59 0.44 0.42	0.53 0.70 0.71 0.44		0.68 0.60 0.29 0.43	0.67 0.46 0.58 0.37	

TreeSonic 1 = TreeSonic + SD02 sensor

TreeSonic 2 = TreeSonic + sliding hammer sensor

<section-header><section-header><section-header><image>

Figure1:TreeSonic1 (SDO2 sensor)

Figure2:TreeSonic 2 (TS sensor)

Remaining questions

Tool and sensors

- Microsecond timer?
- TreeSonic (with SD-02 sensors)?

Method

- Same-face method?
- Opposite-face method?

Measurement production

Genetic parameters

- Heritabilities
- Potential genetic gains

Methods and tools

Which tools? Microsecond Timer TreeSonic Advantages/disadvantages of tools? Table.1 Advantage and disadvantage of the tools Advantage Disadvantage Microsecond Smaller and more practical On/off switch and reset button Reset last reading each time timer SD-02 probe bending TreeSonic Faster Bigger and heavier Automatically switch on/off SD-02 probe bending No button on the unit SD-02 sensor more practical than original TreeSonic Which methods?

- Same-face method
- Opposite-face method

Preliminary results and conclusions

Same-face Opposite-face	
Microsecond timer 0.507 0.418	

Preliminary conclusions

- Standing-tree acoustic velocity measurements in juvenile trees are heritable
- Same-face is better than opposite-face. No difference between tools

Opposite-side method

- I used circumferential opposite-face method
- Test other approaches

Figure 1. Hypothesized stress wave flight paths for the same-face and opposite face methods (Mohan et al 2008)

PNW regional meeti	ing
--------------------	-----

	Stakeholders		Potential Project Partners	
Rank	"Very important" or "top priority" topics		"Very important" or "top priority" topics	
1	Effects on fire, insects, pests	82.3 %	Effects on fire, insects, pests	88.9 %
2	Monitoring	76.5	Forest modeling	83.3
3	Silviculture	64.7	Monitoring	76.5
4	Economics	58.8	Regional climate science	76.4
5	Forest genetics & tree improvement	58.8	Effects on tree physiology	76.4
6	Regional climate science	52.9	Silviculture	66.7
7	Extension	52.9	Forest genetics & tree improvement	66.6
8	Forest modeling	47.0	Social science	61.1
9	Social science	43.8	Forest carbon	58.8
10	Non-forest carbon	41.2	Economics	55.5
11	Effects on tree physiology	41.1	Non-forest carbon	50.0
12	Forest carbon	35.3	Extension	38.9
13	Education	29.4	Education	38.9

	Stakeholdere			Detential Project Partners	
Rank	"Very important" or "top priority" topics		Rank	"Very important" or "top priority" topics	
1	Silviculture	77.8 %	1	Effects on fire, insects, pests	80.0 %
2	Effects on fire, insects, pests	66.7	2	Education	78.9
2	Economics	66.7	3	Regional climate science	76.4
2	Forest genetics & tree improvement	66.7	4	Silviculture	75.0
5	Regional climate science	55.6	4	Water Resources	75.0
5	Water Resources	55.6	4	Extension	75.0
5	Extension	55.6	7	Forest genetics & tree improvement	68.4
8	Social science	44.4	8	Forest modeling	65.0
9	Education	37.5	9	Monitoring	60.0
10	Effects on tree physiology	33.3	10	Economics	55.0
10	Monitoring	33.3	10	Effects on tree physiology	55.0
10	Non-forest carbon	33.3	12	Social science	50.0
13	Forest carbon	11.1	12	Forest carbon	50.0
14	Forest modeling	0.0	12	Non-forest carbon	50.0

Southwest regional meeting

Rank	Stakeholders "Very important" or "top priority" topics			Rank	Potential Project Partners "Very important" or "top priority" topics	i
1	Effects on fire, insects, pests	85.7%		1	Extension	100.0%
1	Extension	85.7		2	Effects on fire, insects, pests	93.3
1	Water Resources	85.7	1	3	Economics	86.7
4	Economics	78.6	1	3	Social science	86.7
4	Effects on tree physiology	78.6	1	5	Water Resources	80
6	Regional climate science	64.3	1	5	Monitoring	80
6	Monitoring	64.3	1	5	Forest modeling	80
8	Social science	57.1	1	5	Silviculture	80
9	Education	46.2		9	Education	73.3
10	Forest genetics & tree improvement	42.9		10	Regional climate science	64.3
10	Silviculture	42.9	Γ.	11	Forest carbon	60.0
12	Forest carbon	30.8	1 (12	Forest genetics & tree improvement	53.3
13	Forest modeling	28.6		13	Effects on tree physiology	46.7
14	Non-forest carbon	14.3		13	Non-forest carbon	46.7

<section-header><complex-block><complex-block>

Mapping the focal point zone 1 point of interest MAP -1 1 -1 MAT Euclidian climate distance is calculated Normalized scores that are greater from the focal point, normalized to a than zero are mapped in the score of 0 to 100, and represented as region, creating a focal point seed color intensity. zone

	Transfer Limit	vn limit,				
S	elect a recommended tran nodel and limit	isfer Select m and limit	y own climate variables s	Use a	zone to calcul	ate a limit
Mean a Descrij Add v	nnual Precip (MAP) [mm] otion: mean annual precipitatio	• n millimeters				
Climate	• Variables Table Method for	determining transfer limit: Se	elect my own climate variables an	d limits		
Climate	• Variables Table Method for Name of climate variable	determining transfer limit. Se Present climate value	elect my own climate variables an Climate value in target year	d limits Target year	Transfer limit	Ready to Map?

<section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

Data inputs.	: transfer limit
--------------	------------------

	Name	Feature	Low elevation	High elevation			
Select	Basic OR modified (1996)	9	2001	3000			
Select	Original OR/WA (1973)	482	2001	3000			
Select	NWTIC-ROSETIC 2nd Gen Breeding	g ROSEBURG	2501	4000			
Choose th	e center of the zone to be mapped						
Ose years	our location coordinates						
O Use th	e climatic center of your input zone						
Colcula	to transfor limit						
Calcula							
Climate	Variables Table Method for deterr	nining transfer limit:	Zone : Location	coordinates used a	s the climatic cer	ter of output map	
Climate	Variables Table Method for deterr	nining transfer limit:	Zone : Location	coordinates used a	s the climatic cer	ter of output map	
Climate	Variables Table Method for deterr	nining transfer limit	Zone : Location	coordinates used a	s the climatic cer	ter of output map	Ready to Man'
Climate	Variables Table Method for deterr	nining transfer limit: esent climate value	Zone : Location Climate val	coordinates used a ue in target year	s the climatic cer Target year	ter of output map Transfer limit	Ready to Map
Climate dit Delete	Variables Table Method for deterr Name of climate variable Pr Mean annual Temp (MAT) 10	nining transfer limit: esent climate value 3	Zone : Location Climate val 126	coordinates used a	s the climatic cer Target year 2050	ter of output map Transfer limit 20	Ready to Map
Climate dit Delete dit Delete	Variables Table Method for deterr Name of climate variable Pr Mean annual Temp (MAT) 10 Mean annual Precip (MAP) 13	nining transfer limit esent climate value 3 60	Zone : Location Climate val 126 1390	coordinates used a	the climatic cer Target year 2050 2050	ter of output map Transfer limit 20 403	Ready to Map'

	Climate Models				
	You may use present climate only, or present and future climates by selecting an emissions scenario, future climate model, and year.	Choose a present climate model			
		Interpolation Model ClimateWNA -			
		Climate Normals 1961-1990 normals -			
		Show Details			
	Future Climate Model	☑ Add a future climate model to study climate change (Optional)			
		Interpolation Model ClimateWNA -			
		CO2 Emission Scenario SRES A2 -			
		Climate Change Model			
		3rd Gen Coupled GCM T63 run1			
		Target Year 2050 -			
		Show Details of Climate Data Source			

Data inputs: constraints								
Constraints	Species Range	Map 👻 Dougla	s-fir 🔻					
You can limit the extent of your map based on non-climatic factors such as species rance, photoperiod, latitude, longitude,	Add							
elevation, and distance.	No area constraints a Constraint	re in effect. Description	Minimum	Maximum				
	Photoperiod	Difference in minutes		30	January 🔹 1 💌			
	Latitude	Degrees N. Latitude	35	53				
	Longitude	Degrees W. Longitude	-129.7	-111				
	Elevation	Elevation in feet						
	Distance	Decimal degrees						

Acknowledgements

- Lauren Magalska GIS assistance
- Tongli Wang ClimateWNA climate data
- Nick Crookston ANUSPLIN climate data
- Paul Berrang Eastern regions tester
- Greg DeVeer web designer

Center for Forest Provenance Data

Objectives

- 1. Archive data from long-term provenance tests and seedling genecology tests
- 2. Make datasets available to researchers through the web

Web site: http://cenforgen.forestry.oregonstate.edu/index.php

Denise Cooper, Brad St.Clair, Glenn Howe, Jessica Wright, Greg DeVeer Funded by USFS Climate Change Research Program

19 studies in system 11 Douglas-fir 1 Whitebark Pine 2 Sugar Pine 3 Ponderosa Pine 1 White Fir / California Red Fir 1 Ponderosa Pine / Jeffery Pine 3 studies to process, add to database/web Some studies provide data for all categories; others require contacting PI for response data

Budget and Other Business

Glenn Howe

Pacific Northwest Tree Improvement Research Cooperative Department of Forest Ecosystems and Society Oregon State University

PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE

Budget 2010-11 Attachment #1 Financial Support Received in 2010-2011 Organization Financial Support Main points Regular Members Cascade Timber Consulting 8,000 Bureau of Land Management 8,000 2010-11 income = \$110K Forest Capital Partners 8,000 Green Diamond Resource Company 8,000 Longview Timber Company 8,000 Rayonier = new member Olympic Resource Management 8,000 8,000 Oregon Department of Forestry* 2011-12 income = \$110K Plum Creek Timber Company 8,000 Port Blakely Tree Farms 8.000 Indirect = 13% Rayonier 8,000 Roseburg Forest Products* 8.000 Stimson Lumber Company 8,000 Income exceeded expenses (see Washington State Dept. of Natural Resources 8,000 next slide) Associate Members 4.000 Starker Forests Have substantial carryover – this Contractual Members year only (see next slide) Lone Rock Timber Company 2,000 Total 110,000

Budget 2010-11

Main points

- Summarizes costs of personnel
- Personnel costs were covered by PNWTIRC members and OSU (Director)
- Expenses were less than income because CAFS and CTGN funds were used to pay some salaries
- Carryover increased
- Budget could change after we learn which CAFS proposals are funded – but probably not

Income and Expenditures	OSU	Members	Total
ncome			
OSU Forest Research Laboratory	121,367	0	121,367
Membership fees and contracts	0	110,000	110,000
Carryover from previous year	0	25,576	25,576
Fotal income	121,367	135,576	256,943
Expenditures		\smile	
Salaries and OPE*			
Director (0.5 FTE funded by OSU)	68,065	0	68,065
Program Manager (0.10 FTE)	0	7,420	7,420
Research Coordinator (0.19 FTE)	0	13,655	13,655
Graduate students (0.58 FTE)	0	29,168	29,168
Student employees	0	6,669	6,669
Contracts	0	0	0
Supplies and Services	0	4,995	4,995
Travel	0	3,925	3,925
Total direct costs (TDC)	68,065	65,832	133,897
Indirect costs**	53,302	8,558	61,860
Direct + Indirect Costs	121,367	74,390	195,757
Carryover to next year	0	61,186	61,186

Attachment #2

Budget 2010-11

Main points

- Summarizes costs by project
- Most project costs reflect allocation of personnel costs to different projects
- Overall, expenditures were less than projected because CAFS and CTGN funds were used to pay some salaries
- We did not undertake additional CTGN wood stiffness field work this year
- The CAFS DF provenance test proposal was not funded

Attachment #3

Proposed and Actual PNWTIRC Budgets for 2010-2011*

Income	Proposed (7/10)	Actual (7/11)
Members fees and contracts	102,000	110,000
Carryover from previous year	22,402	25,576
Total income	124,402	135,576
Expenses	Proposed (7/10)	Actual (7/11)
Miniaturized Seed Orchards	8,766	9,586
Site Characterization (CAFS)	26,250	24,817
Wood Quality (CTGN)	15,831	0
Wood Quality (CAFS)	30,180	17,065
DF provenance tests (CAFS)	10,954	0
Technology Transfer	4,983	0
Administration	11,643	14,365
Total direct costs (TDC)	108,606	65,832
Indirect costs**	14,119	8,558
Direct + Indirect costs	122,725	74,390
Carryover to next year	1677	61 195

Expense*	Mini Orchards	Site Char. (CAFS)	WQ (CTGN)	WQ (CAFS)	Technology Transfer	Admin.	Tota
Director (funded by OSU) (approx. FTE)	0 0.10	0 0.15	0 0.00	0 0.15	0 0.00	0 0.10	0.5
Program Manager (approx. FTE)	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	7,420 0.10	7,420
Research Coordinator (approx. FTE)	4,096 0.06	0 0.00	0 0.00	8,193 0.11	0 0.00	1,365 0.02	13,655 0.15
Graduate students (approx. FTE)**	0 0.00	24,642 0.49	0 0.00	4,526 0.09	0 0.00	0 0.00	29,16 0.5
Student employees (proportion of expense)	5,089 0.76	0 0.00	0 0.00	991 0.15	0 0.00	588 0.09	6,669 1.00
Personnel sub-total	9,186	24,642	0	13,710	0	9,374	56,912
Contracts	0	0	0	0	0	0	(
Supplies & Services	61	0	0	867	0	4,067	4,998
Travel	339	175	0	2,487	0	924	3,925
Non-personnel sub-total	400	175	0	3,355	0	4,991	8,920
Total direct costs (TDC)	9,586	24,817	0	17,085	0	14,365	65,83
Indirect costs (13% of TDC)	1,246	3,226	0	2,218	0	1,867	8,558
Total costs	10,832	28,043	0	19,283	0	16,232	74,39

Budget 2011-12

Main points

- Summarizes proposed costs of personnel for 2011-2012
- Part-time Program Manager (shared with CAFS and Strauss)
- Change to full-time Research Coordinator this year
- Increase in expenditures
 No CTGN funds to augment
- Partial support of graduate student (Oguz Urhan)
- Contracts = proposed SNP genotyping

Attachment #5 Proposed Expenditures of Cooperator Funds for Fiscal Year 2011-2012 FY 2010-11 FY 2011-12 Income and Expenditures Income from Cooperators Membership fees and contracts 110,000 110,000 Carryover from previous year 25,576 61,186 Total income 135,576 171,186 Expenditures Salaries and OPE* Director (0.5 FTE funded by OSU) Program Manager (0.10 FTE) 7,420 7,500 Research Coordinator 13,655 73,746 Graduate students (0.58 FTE) 29,168 7,500 Student employees 6,669 7.000 Contracts 15,000 0 Supplies and Services 4,995 6,500 Travel 3,925 4,800 Total direct costs (TDC) 65,832 122,046 Indirect costs** 8,558 15,866 Direct + Indirect Costs 74,390 137,912 Carryover to next year 61,186 33,274 *OPE = other personnel expenses **Co-op indirect costs = 13% of Co-op TDC

Budget 2011-12

Main points

- Summarizes proposed costs by project
- We expect that site characterization research will be augmented by CAFS
- We expect that WQ research will be augmented by CAFS
- I propose to transition into a new PNWTIRC project on SNP-based marker-assisted selection

Atta Proposed Expendit for Fiscal	chment #6 ures of Coopera Year 2011-2012	tor Funds
Income	FY 2010-11	FY 2011-12
Members fees and contracts	110,000	110,000
Carryover from previous year	25,576	61,186
Total income	135,576	171,186
Expenses	FY 2010-11	FY 2011-12
Miniaturized Seed Orchards	9,586	25,674
Site Characterization (CAFS)	24,817	15,375
SNP Marker-assisted Selection	0	26,125
Wood quality (CAFS?)	17,065	34,998
Technology Transfer	0	0
Administration	14,365	19,875
Total direct costs (TDC)	65,832	122,046
Indirect costs*	8,558	15,866
Direct + Indirect costs	74,390	137,912
Carryover to next year	61,186	33,274
*Co-op indirect costs = 13% of Co-op 1	TDC	

Budget details for 2011-2012

	Mini	Site Char.	SNP	WQ	Tech		
Expense*	Orchards	(CAFS)	MAS	(CAFS)	Transfer	Admin.	Tota
Director (funded by OSU) (approx. FTE)	0 0.05	0 0.10	0 0.15	0 0.10	0 0.00	0 0.10	0.9
Program manager (approx. FTE)	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	7,500 0.10	7,50 0.1
Research Coordinator (approx. FTE)	22,124 0.30	7,375 0.10	7,375 0.10	29,498 0.40	0 0.00	7,375 0.10	73,74 1.0
FRA/Graduate students (approx. FTE)**	0 0.00	7,500 0.13	0 0.00	0 0.00	0 0.00	0 0.00	7,50 0.1
Student employees (proportion of expense)	3,000 0.43	0 0.00	2,000 0.29	1,000 0.14	0 0.00	1,000 0.14	7,00 1.0
Personnel sub-total	25,124	14,875	9,375	30,498	0	15,875	95,74
Contracts	0	0	15,000	0	0	0	15,00
Supplies & Services	250	250	1,500	1,500	0	3,000	6,50
Travel	300	250	250	3,000	0	1,000	4,80
Non-personnel sub-total	550	500	16,750	4,500	0	4,000	26,30
Total direct costs (TDC)	25,674	15,375	26,125	34,998	0	19,875	122,04
Indirect costs (13% of TDC)	3,338	1,999	3,396	4,550	0	2,584	15,86
Total costs	29.011	17.373	29.521	39.548	0	22,458	137.91

The Conifer Translational Genomics Network Coordinated Agricultural Project is a multistate, multi-institution project, funded by USDA/CSREES/NRI and the USDA Forest Service. CTGN will deliver genomic assisted breeding by linking laboratory and field research with education and extension. Assertive and comprehensive education and extension programs will provide widespread training for post-doctoral researchers, graduate and undergraduate students, tree breeders, managers, stakeholders, and the general public.

* What is CTGN CAP?

Overview

- What are SNPs? How do we find them?
- Transcriptome sequencing
- SNP discovery
- Marker-assisted selection Genomic selection
- A Douglas-fir SNP chip is coming!
- Conclusions and future

CTGN CAP

Focus of Douglas-fir CTGN program

Need more SNP markers for Douglas-fir

Available resources at the start of the CTGN project
 18,000 ESTs (Sanger) and 384 SNP chip (121 genes)

We added next-generation transcriptome sequencing for SNP discovery

- DOE Joint Genome Institute 454 sequencing project (Dean et al)
- New CTGN sequencing (454 and Illumina)
- Collaboration with Rich Cronn, USFS (Illumina sequencing)

Use of CTGN information and resources

- Incorporate phenotypes from the NWTIC program (relevant to breeders)
- A valuable goal would be to genotype all second-cycle parents
- Measure new phenotypes where possible

Douglas-fir	cDNA	libraries
-------------	------	-----------

			Number	of reads filte	red from th	e input datase	t (% of lib	rary total)
Plant materials (dataset ID)	Sequencing	in dataset	Short or	Adapter	Chloro-	Mitochon-	rRNA	Retro-
Collection information	method*	(%)	low quality	or vector	plast	drial		transposor
Multi-genotype #1 (MG1_S) Cold season Greenhouse	Sanger Normalized Non-normalized	12157 (100)	57 (0.47)	0 (0.00)	2 (0.02)	2 (0.02)	0 (0.00)	1 (0.01)
Multi-genotype #2 (MG2_R)	GS-FLX Titanium	1709211	6649	1893	8570	5519	7264	11114
Cold and warm seasons	Normalized	(100)	(0.39)	(0.11)	(0.50)	(0.32)	(0.42)	(0.65)
Single-genotype (SG_R)	GS-FLX Titanium	1241260	6582	1826	11070	10463	86828	21849
July 8, 2008	Non-normalized	(100)	(0.53)	(0.15)	(0.89)	(0.84)	(7.00)	(1.76)
All libraries		2962628 (100)	13288 (0.45)	3719 (0.13)	19642 (0.66)	15984 (0.54)	94092 (3.18)	32964 (1.11)

(CTGN) CAP

negenome.org/ctgn

DF transcriptome assembly

Statistic	Number
Total reads	2764549
Assembled reads	2544087
Total assembled	2741911
Singletons	102623
Isogroups (genes)	25002
Isotigs	38589
One isotig/isogroup	18774
Mean length of isotig	1390
N50	1883
Total consensus nucleotides	72302278

genome.org/ctgn

Гуре	No. of WS hits	Diff DF hits same WS?	Do other DF overlap?	Isotig Confid.	1 isotig/ Isogroup (18774)	2+ isotigs/ isogroup (19815)
I	1	No	-	Highest	5140	261
Ш	2+	No	-	Higher	894	86
ш	1	Yes	No	Higher	1767	577
IV	1	Yes	Yes	Medium	1736	6974
v	2+	Yes	No	Medium	587	161
VI	2+	Yes	Yes	Lower	3406	7040
	Total hits	-	-	-	13530	15099
VII	No hits	-	-	Lower	5244	4716

We can infer the functions of many genes

Table 2. Numbers and percents of Douglas-fir cDNA sequences with matches to sequences in three protein databases (BlastX e-value $< 10^{5}$).

		Unigenes	(25002)*		Singleton	$s (102623)^{\dagger}$
	1 isotig (18	/isogroup 3774)	>1 isotig (62	/isogroup 228)	Singl (102	letons (623)
Database	Number	Percent	Number	Percent	Number	Percent
Uniref50	15054	80.2	3446	55.3	25757	25.1
TAIR9	13747	73.2	3254	52.3	15917	15.5
Annot8r	11733	62.5	2862	46.0	14836	14.5

^{*} Unigenes are Newbler v2.3 isogroups. For the isogroups with more than 1 isotig, a hit was counted only if all isotigs matched the same protein in the database.

for the state of t

 † Singletons are 454 reads that did not assemble with any other reads.

genome.org/ctg

Table 3. Numbers of Douglas-Irr cDNA sequences with matches to sequences in the Uniter50 protein database. Matches are grouped by taxonomic affiliation and percentages are relative to the total number of matches (BlastX e-value $< 10^{\circ}$). Numbers of input Douglas-fir sequences are in parentheses.								
		Unigenes	(25002)		Singleton	ns (102623)		
	1 isotig (1	/isogroups 3744)	> 1 isotig/isogroups (6228)		Singletons (102623)			
Taxonomic category	Number	Percent	Number	Percent	Number	Percent		
Conifers	4088	27.16	1073	31.14	6486	25.18		
Other plants	9713	64.52	2047	59.40	16061	62.36		
Fungi	6	0.04	4	0.12	66	0.26		
Invertebrates	487	3.24	120	3.48	1087	4.22		
Vertebrates	17	0.11	6	0.17	92	0.36		
Other Eukaryotes	582	3.87	182	5.28	658	2.55		
Bacteria	123	0.82	8	0.23	830	3.22		
Viruses	4	0.03	0	0.00	19	0.07		
Environmental samples	21	0.14	6	0.17	37	0.14		
Unassigned	13	0.09	0	0.00	421	1.63		
Total matches	15054	100	3446	100	25757	100		

w.pinegenome.org/ctgn

(CTGN) CAP

We can infer the functions of many genes

			Bit-				
Annotation	Accession	Species	score	E-value			
Enhanced disease susceptibility 1	Q9SU72	Arabidopsis thalia	209	2.00E-53		Disease	
Putative uncharacterized protein	Q8BQW4	Mus musculus	55.5	2.00E-08			
Disease resistance protein RPS5	O64973	Arabidopsis thalia	116	2.00E-39		Disease	
Non-specific lipid-transfer protein 3	Q9LLR7	Arabidopsis thalia	70.5	3.00E-12			
Cytochrome P450 84A1	Q42600	Arabidopsis thalia	232	5.00E-90			
Probable disease resistance protein At4g33300	Q9SZA7	Arabidopsis thalia	467	e-131		Disease	
Putative adenylosuccinate lyase	Q8RY94	Arabidopsis thalia	636	0			
Cell cycle-related protein	Q9ZPE7	Arabidopsis thalia	214	2.00E-55			
Laccase-5	Q9SIY8	Arabidopsis thalia	148	3.00E-36			Laccase
Aquaporin NIP1-2	Q8LFP7	Arabidopsis thalia	211	2.00E-54	Aquaporin		
Leucine-rich repeat receptor-like protein kinase (I	Fraş COLGM1	Arabidopsis thalia	317	e-115			
Leucine-rich repeat receptor-like protein kinase (F	Fra{ C0LGM1	Arabidopsis thalia	320	e-116			
Cytokinin-O-glucosyltransferase 2	Q9SK82	Arabidopsis thalia	288	3.00E-77		Growth	
Putative lipid phosphate phosphatase 3, chloropla	istii Q8LFD1	Arabidopsis thalia	375	e-103			
Mannan endo-1,4-beta-mannosidase C	Q5AZ53	Emericella nidula	150	6.00E-36			
17.9 kDa class I heat shock protein	Q84Q77	Oryza sativa subs	157	3.00E-38 Tem	ip)		
Disease resistance protein RPS2	Q42484	Arabidopsis thalia	127	2.00E-44		Disease	
Xanthoxin dehydrogenase	Q9C826	Arabidopsis thalia	216	9.00E-56	\sim		
Dehydration-responsive element-binding protein	2A 082132	Arabidopsis thalia	117	2.00E-25	Water		
Argonaute (AGO1)-like protein	Q9ZVD5	Arabidopsis thalia	897	0			
Argonaute (AGO1)-like protein	Q9ZVD5	Arabidopsis thalia	897	0	\sim		
Gamma-secretase subunit Aph-1	Q9VQG2	Drosophila melan	68.2	5.00E-11			
Peroxidase 54	Q9FG34	Arabidopsis thalia	319	8.00E-87			
Disease resistance protein-like	Q9DKN9	Arabidopsis thalia	228	8.00E-59		Disease	
Lipoxygenase 5, chloroplastic	Q9LUW0	Arabidopsis thalia	808	0			

(CTGN) CAP

inegenome.org/ct

Acknowledgements

Genomic resources from CTGN can be used by Douglas-fir breeders

- Pacific Northwest Tree Improvement Research Cooperative (PNWTIRC)
- Northwest Tree Improvement Cooperative (NWTIC)
- Inland Empire Tree Improvement Cooperative (IETIC)

Collaborators are...

- PNWTIRC, NWTIC (Keith Jayawickrama), and IETIC (Marc Rust)
- USFS Pacific Northwest Research Station (Cronn)
- University of GA and Joint Genome Institute (Dean)
- USFS Rocky Mountain Research Station (Cushman)

pinegenome.org/ctgn

Table 1: MSO research goals and progress (Anekonda and Adams 1999)					
Original objectives	Location	Status Ongoing			
 Compare three orchard types for seed production and management efficiency 	Plum Creek MSO				
 Define the best age to begin floral stimulation in MSOs 	Roseburg Resources Vaughn & PNWCTA orchards	Completed - Cherry et al. 2007			
3) Evaluate crown control techniques	Roseburg Resources Vaughn orchard	Completed - Pruning study			
 Compare pollination methods (CP, SMP) 		Drop objective			
5) Evaluate the clonal response to MSO management regimes	Plum Creek MSO	Ongoing			

Orchard activities 2010 - 2011

Flower stimulation

 Half the blocks in the 2x4 and 4x6 m orchards, all of the 1x3 m orchard block were stimulated in the spring of 2010 (girdling and calcium nitrate)

Data collected

- 2010 crop crown size, cone counts, seed counts
- 2011 crop cone counts

PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE

Crown volume by spacing and ortet age

Future measurement activities 2011-2012

Activity	Scope	Date
Crown measurements	2011 crop - cones / crown volume	October
Flower counts	2012 crop – flwr. to cone relationship	April
Flower & bud phenology	2012 crop – diff. between orchards	April
Flower stimulation	2013 crop – stim. method or methods	March
Cone counts	2012 crop – cones by orchard spacing	August
Seed measurements	2012 cone – filled seed consequences	November
2011 Cone crop = half of the 2x4 and 4x6 m orchards replications		
2012 Cone crop = half of the 2x4 and 4x6 m orchards, all 1x3 replications		
2013 Cone crop = s	ame replications as 2011	

PACIFIC NORTHWEST TREE IMPROVEMENT RESEARCH COOPERATIVE

